Sparse Multivariate Taylor SeriesΒΆ

Assume we have three variables which get expressed as sparse multivariate taylor series.:

xts:=x::TaylorSeries Fraction Integer
yts:=y::TaylorSeries Fraction Integer
zts:=z::TaylorSeries Fraction Integer

These will cause traditional routines to expand in series form:

t1:=sin(xts)

       1  3    1   5     1   7      1    9
   x - - x  + --- x  - ---- x  + ------ x  + O(11)
       6      120      5040      362880

We can ask for a specific coefficient, in this case, the coefficient of the third power.

coefficient(t1,3)

     1  3
   - - x
     6

And we can get that coefficient, expressed as a monomial.

coefficient(t1,monomial(3,x)$IndexedExponents Symbol)

     1
   - -
     6

In a multivariate version we get a polynomial in x and y

t2:=sin(xts + yts)

                1  3   1    2   1  2    1  3
   (y + x) + (- - y  - - x y  - - x y - - x )
                6      2        2       6
 +
     1   5    1    4    1  2 3    1  3 2    1  4     1   5
   (--- y  + -- x y  + -- x y  + -- x y  + -- x y + --- x )
    120      24        12        12        24       120
 +
   PAREN
            1   7    1     6    1   2 5    1   3 4    1   4 3    1   5 2
        - ---- y  - --- x y  - --- x y  - --- x y  - --- x y  - --- x y
          5040      720        240        144        144        240
      +
           1   6      1   7
        - --- x y - ---- x
          720       5040
 +
   PAREN
           1    9     1      8     1    2 7     1   3 6     1   4 5
        ------ y  + ----- x y  + ----- x y  + ---- x y  + ---- x y
        362880      40320        10080        4320        2880
      +
          1   5 4     1   6 3     1    7 2     1    8       1    9
        ---- x y  + ---- x y  + ----- x y  + ----- x y + ------ x
        2880        4320        10080        40320       362880
 +
   O(11)

We can ask for the third coefficient which is

coefficient(t2,3)

     1  3   1    2   1  2    1  3
   - - y  - - x y  - - x y - - x
     6      2        2       6

And we can ask for the third coefficient of that coefficient in x

coefficient(t2,monomial(3,x)$IndexedExponents Symbol)

     1
   - -
     6

And we can convert that result to a polynomial

polynomial(t2,5)

    1   5    1    4     1  2   1  3     1  3   1    2     1  4   1  2
   --- y  + -- x y  + (-- x  - -)y  + (-- x  - - x)y  + (-- x  - - x  + 1)y
   120      24         12      6       12      2         24      2
 +
    1   5   1  3
   --- x  - - x  + x
   120      6

See Also:

  • )show SparseMultivariateTaylorSeries
  • )display op coefficient

Table Of Contents

This Page