GroebnerΒΆ

Example to call groebner:

s1:DMP[w,p,z,t,s,b]RN:= 45*p + 35*s - 165*b - 36
s2:DMP[w,p,z,t,s,b]RN:= 35*p + 40*z + 25*t - 27*s
s3:DMP[w,p,z,t,s,b]RN:= 15*w + 25*p*s + 30*z - 18*t - 165*b**2
s4:DMP[w,p,z,t,s,b]RN:= -9*w + 15*p*t + 20*z*s
s5:DMP[w,p,z,t,s,b]RN:= w*p + 2*z*t - 11*b**3
s6:DMP[w,p,z,t,s,b]RN:= 99*w - 11*b*s + 3*b**2
s7:DMP[w,p,z,t,s,b]RN:= b**2 + 33/50*b + 2673/10000

sn7:=[s1,s2,s3,s4,s5,s6,s7]

groebner(sn7,info)

groebner calculates a minimal Groebner Basis all reductions are TOTAL reductions

To get the reduced critical pairs do:

groebner(sn7,"redcrit")

You can get other information by calling:

groebner(sn7,"info")

which returns:

ci  =>  Leading monomial  for critpair calculation
tci =>  Number of terms of polynomial i
cj  =>  Leading monomial  for critpair calculation
tcj =>  Number of terms of polynomial j
c   =>  Leading monomial of critpair polynomial
tc  =>  Number of terms of critpair polynomial
rc  =>  Leading monomial of redcritpair polynomial
trc =>  Number of terms of redcritpair polynomial
tF  =>  Number of polynomials in reduction list F
tD  =>  Number of critpairs still to do

See Also:

  • )display operations groebner
  • )show GroebnerPackage
  • )show DistributedMultivariatePolynomial
  • )show HomogeneousDistributedMultivariatePolynomial
  • )show EuclideanGroebnerBasisPackage

Table Of Contents

This Page