Euclidean GroebnerΒΆ

Example to call euclideanGroebner:

a1:DMP([y,x],INT):= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
a2:DMP([y,x],INT):= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
a3:DMP([y,x],INT):= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
an:=[a1,a2,a3]
euclideanGroebner(an)

This will return the weak euclidean Groebner basis set. All reductions are total reductions.

You can get more information by providing a second argument. To get the reduced critical pairs do:

euclideanGroebner(an,"redcrit")

You can get other information by calling:

euclideanGroebner(an,"info")

which returns:

ci  =>  Leading monomial  for critpair calculation
tci =>  Number of terms of polynomial i
cj  =>  Leading monomial  for critpair calculation
tcj =>  Number of terms of polynomial j
c   =>  Leading monomial of critpair polynomial
tc  =>  Number of terms of critpair polynomial
rc  =>  Leading monomial of redcritpair polynomial
trc =>  Number of terms of redcritpair polynomial
tH  =>  Number of polynomials in reduction list H
tD  =>  Number of critpairs still to do

The three argument form returns all of the information:

euclideanGroebner(an,"info","redcrit")

The term ordering is determined by the polynomial type used.

Suggested types include

DistributedMultivariatePolynomial
HomogeneousDistributedMultivariatePolynomial
GeneralDistributedMultivariatePolynomial

See Also:

  • )display operations euclideanGroebner
  • )show EuclideanGroebnerBasisPackage
  • )show DistributedMultivariatePolynomial
  • )show HomogeneousDistributedMultivariatePolynomial
  • )show GeneralDistributedMultivariatePolynomial
  • )show GroebnerPackage

Table Of Contents

This Page