All rational numbers have repeating binary expansions. Operations to access the individual bits of a binary expansion can be obtained by converting the value to RadixExpansion(2).
The expansion (of type BinaryExpansion) of a rational number is returned by the binary operation.
r := binary(22/7)
___
11.001
Type: BinaryExpansion
Arithmetic is exact.
r + binary(6/7)
100
Type: BinaryExpansion
The period of the expansion can be short or long.
[binary(1/i) for i in 102..106]
________
[0.00000101,
___________________________________________________
0.000000100111110001000101100101111001110010010101001,
____________ ____________
0.000000100111011, 0.000000100111,
____________________________________________________
0.00000010011010100100001110011111011001010110111100011]
Type: List BinaryExpansion
or very long.
binary(1/1007)
________________________________________________________________________
0.000000000100000100010100100101111000001111110000101111110010110001111101
________________________________________________________________________
000100111001001100110001100100101010111101101001100000000110000110011110
________________________________________________________________________
111000110100010111101001000111101100001010111011100111010101110011001010
________________________________________________________________________
010111000000011100011110010000001001001001101110010101001110100011011101
________________________________________________________________________
101011100010010000011001011011000000101100101111100010100000101010101101
________________________________________________________________________
011000001101101110100101011111110101110101001100100001010011011000100110
____________________________________
001000100001000011000111010011110001
Type: BinaryExpansion
These numbers are bona fide algebraic objects.
p := binary(1/4)*x**2 + binary(2/3)*x + binary(4/9)
__ ______
0.01 x^2 +0.10 x + 0.011100
Type: Polynomial BinaryExpansion
q := D(p, x)
__
0.1 x + 0.10
Type: Polynomial BinaryExpansion
g := gcd(p, q)
__
x+1.01
Type: Polynomial BinaryExpansion
See Also: