The XPolynomial domain constructor implements multivariate polynomials whose set of variables is Symbol. These variables do not commute. The only parameter of this construtor is the coefficient ring which may be non-commutative. However, coefficients and variables commute. The representation of the polynomials is recursive. The abbreviation for XPolynomial is XPOLY.
Other constructors like XPolynomialRing, XRecursivePolynomial as well as XDistributedPolynomial, LiePolynomial and XPBWPolynomial implement multivariate polynomials in non-commutative variables.
We illustrate now some of the facilities of the XPOLY domain constructor.
Define a polynomial ring over the integers.
poly := XPolynomial(Integer)
XPolynomial Integer
Type: Domain
Define a first polynomial,
pr: poly := 2*x + 3*y-5
- 5 + x 2 + y 3
Type: XPolynomial Integer
and a second one.
pr2: poly := pr*pr
25 + x(- 20 + x 4 + y 6) + y(- 30 + x 6 + y 9)
Type: XPolynomial Integer
Rewrite pr in a distributive way,
pd := expand pr
- 5 + 2x + 3y
Type: XDistributedPolynomial(Symbol,Integer)
compute its square,
pd2 := pd*pd
2 2
25 - 20x - 30y + 4x + 6x y + 6y x + 9y
Type: XDistributedPolynomial(Symbol,Integer)
and checks that:
expand(pr2) - pd2
0
Type: XDistributedPolynomial(Symbol,Integer)
We define:
qr := pr**3
- 125 + x(150 + x(- 60 + x 8 + y 12) + y(- 90 + x 12 + y 18))
+
y(225 + x(- 90 + x 12 + y 18) + y(- 135 + x 18 + y 27))
Type: XPolynomial Integer
and:
qd := pd**3
2 2 3 2
- 125 + 150x + 225y - 60x - 90x y - 90y x - 135y + 8x + 12x y + 12x y x
+
2 2 2 3
18x y + 12y x + 18y x y + 18y x + 27y
Type: XDistributedPolynomial(Symbol,Integer)
We truncate qd at degree 3.
trunc(qd,2)
2 2
- 125 + 150x + 225y - 60x - 90x y - 90y x - 135y
Type: XDistributedPolynomial(Symbol,Integer)
The same for qr:
trunc(qr,2)
- 125 + x(150 + x(- 60) + y(- 90)) + y(225 + x(- 90) + y(- 135))
Type: XPolynomial Integer
We define:
Word := OrderedFreeMonoid Symbol
OrderedFreeMonoid Symbol
Type: Domain
and:
w: Word := x*y**2
2
x y
Type: OrderedFreeMonoid Symbol
We can compute the right-quotient of qr by r:
rquo(qr,w)
18
Type: XPolynomial Integer
and the shuffle-product of pr by r:
sh(pr,w::poly)
x(x y y 4 + y(x y 2 + y(- 5 + x 2 + y 9))) + y x y y 3
Type: XPolynomial Integer
See Also: