RN := Fraction Integer
Fraction Integer
Type: Domain
Lpoly := LiePolynomial(Symbol,RN)
LiePolynomial(Symbol,Fraction Integer)
Type: Domain
Dpoly := XDPOLY(Symbol,RN)
XDistributedPolynomial(Symbol,Fraction Integer)
Type: Domain
Lword := LyndonWord Symbol
LyndonWord Symbol
Type: Domain
a:Symbol := 'a
a
Type: Symbol
b:Symbol := 'b
b
Type: Symbol
c:Symbol := 'c
c
Type: Symbol
aa: Lpoly := a
[a]
Type: LiePolynomial(Symbol,Fraction Integer)
bb: Lpoly := b
[b]
Type: LiePolynomial(Symbol,Fraction Integer)
cc: Lpoly := c
[c]
Type: LiePolynomial(Symbol,Fraction Integer)
p : Lpoly := [aa,bb]
[a b]
Type: LiePolynomial(Symbol,Fraction Integer)
q : Lpoly := [p,bb]
2
[a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
All the Lyndon words of order 4
liste : List Lword := LyndonWordsList([a,b], 4)
2 2 3 2 2 3
[[a],[b],[a b],[a b],[a b ],[a b],[a b ],[a b ]]
Type: List LyndonWord Symbol
r: Lpoly := p + q + 3*LiePoly(liste.4)$Lpoly
2 2
[a b] + 3[a b] + [a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
s:Lpoly := [p,r]
2 2
- 3[a b a b] + [a b a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
t:Lpoly := s + 2*LiePoly(liste.3) - 5*LiePoly(liste.5)
2 2 2
2[a b] - 5[a b ] - 3[a b a b] + [a b a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
degree t
5
Type: PositiveInteger
mirror t
2 2 2
- 2[a b] - 5[a b ] - 3[a b a b] + [a b a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
Jacobi(p: Lpoly, q: Lpoly, r: Lpoly): Lpoly == _
[ [p,q]\$Lpoly, r] + [ [q,r]\$Lpoly, p] + [ [r,p]\$Lpoly, q]
Type: Void
test: Lpoly := Jacobi(a,b,b)
0
Type: LiePolynomial(Symbol,Fraction Integer)
test: Lpoly := Jacobi(p,q,r)
0
Type: LiePolynomial(Symbol,Fraction Integer)
test: Lpoly := Jacobi(r,s,t)
0
Type: LiePolynomial(Symbol,Fraction Integer)
eval(p, a, p)$Lpoly
2
[a b ]
Type: LiePolynomial(Symbol,Fraction Integer)
eval(p, [a,b], [2*bb, 3*aa])$Lpoly
- 6[a b]
Type: LiePolynomial(Symbol,Fraction Integer)
r: Lpoly := [p,c]
[a b c] + [a c b]
Type: LiePolynomial(Symbol,Fraction Integer)
r1: Lpoly := eval(r, [a,b,c], [bb, cc, aa])$Lpoly
- [a b c]
Type: LiePolynomial(Symbol,Fraction Integer)
r2: Lpoly := eval(r, [a,b,c], [cc, aa, bb])$Lpoly
- [a c b]
Type: LiePolynomial(Symbol,Fraction Integer)
r + r1 + r2
0
Type: LiePolynomial(Symbol,Fraction Integer)
See Also: