==================================================================== Sparse Multivariate Taylor Series ==================================================================== Assume we have three variables which get expressed as sparse multivariate taylor series.:: xts:=x::TaylorSeries Fraction Integer yts:=y::TaylorSeries Fraction Integer zts:=z::TaylorSeries Fraction Integer These will cause traditional routines to expand in series form: :: t1:=sin(xts) 1 3 1 5 1 7 1 9 x - - x + --- x - ---- x + ------ x + O(11) 6 120 5040 362880 We can ask for a specific coefficient, in this case, the coefficient of the third power. :: coefficient(t1,3) 1 3 - - x 6 And we can get that coefficient, expressed as a monomial. :: coefficient(t1,monomial(3,x)$IndexedExponents Symbol) 1 - - 6 In a multivariate version we get a polynomial in x and y :: t2:=sin(xts + yts) 1 3 1 2 1 2 1 3 (y + x) + (- - y - - x y - - x y - - x ) 6 2 2 6 + 1 5 1 4 1 2 3 1 3 2 1 4 1 5 (--- y + -- x y + -- x y + -- x y + -- x y + --- x ) 120 24 12 12 24 120 + PAREN 1 7 1 6 1 2 5 1 3 4 1 4 3 1 5 2 - ---- y - --- x y - --- x y - --- x y - --- x y - --- x y 5040 720 240 144 144 240 + 1 6 1 7 - --- x y - ---- x 720 5040 + PAREN 1 9 1 8 1 2 7 1 3 6 1 4 5 ------ y + ----- x y + ----- x y + ---- x y + ---- x y 362880 40320 10080 4320 2880 + 1 5 4 1 6 3 1 7 2 1 8 1 9 ---- x y + ---- x y + ----- x y + ----- x y + ------ x 2880 4320 10080 40320 362880 + O(11) We can ask for the third coefficient which is :: coefficient(t2,3) 1 3 1 2 1 2 1 3 - - y - - x y - - x y - - x 6 2 2 6 And we can ask for the third coefficient of that coefficient in x :: coefficient(t2,monomial(3,x)$IndexedExponents Symbol) 1 - - 6 And we can convert that result to a polynomial :: polynomial(t2,5) 1 5 1 4 1 2 1 3 1 3 1 2 1 4 1 2 --- y + -- x y + (-- x - -)y + (-- x - - x)y + (-- x - - x + 1)y 120 24 12 6 12 2 24 2 + 1 5 1 3 --- x - - x + x 120 6 See Also: * )show SparseMultivariateTaylorSeries * )display op coefficient