Mapping PackageΒΆ

Function are objects of type Mapping. In this section we demonstrate some library operations from the packages MappingPackage1, MappingPackage2, and MappingPackage3 that manipulate and create functions. Some terminology: a nullary function takes no arguments, a unary function takes one argument, and a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an integer exponent.

power(q: FRAC INT, n: INT): FRAC INT == q**n
                    Type: Void

power(2,3)
  8
                     Type: Fraction Integer

The twist operation transposes the arguments of a binary function. Here rewop(a, b) is power(b, a).

rewop := twist power
  theMap(MAPPKG3;twist;MM;5!0)
                     Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 2^3.

rewop(3, 2)
  8
                     Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT
                     Type: Void

The curryRight operation creates a unary function from a binary one by providing a constant argument on the right.

square:= curryRight(power, 2)
  theMap(MAPPKG3;curryRight;MBM;1!0,0)
                     Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeft operation provides a constant argument on the left.

square 4
  16
                     Type: Fraction Integer

The constantRight operation creates (in a trivial way) a binary function from a unary one: constantRight(f) is the function g such that g(a,b)= f(a).

squirrel:= constantRight(square)$MAPPKG3(FRAC INT,FRAC INT,FRAC INT)
  theMap(MAPPKG3;constantRight;MM;3!0)
            Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel(1/2, 1/3)
  1
  -
  4
                     Type: Fraction Integer

The curry operation makes a unary function nullary.

sixteen := curry(square, 4/1)
  theMap(MAPPKG2;curry;MAM;2!0,0)
                     Type: (() -> Fraction Integer)

sixteen()
  16
                     Type: Fraction Integer

The * operation constructs composed functions.

square2:=square*square
  theMap(MAPPKG3;*;MMM;6!0,0)
                     Type: (Fraction Integer -> Fraction Integer)

square2 3
  81
                     Type: Fraction Integer

Use the ** operation to create functions that are n-fold iterations of other functions.

sc(x: FRAC INT): FRAC INT == x + 1
                     Type: Void

This is a list of Mapping objects.

incfns := [sc**i for i in 0..10]
 [theMap(MAPPKG1;**;MNniM;6!0,0), theMap(MAPPKG1;**;MNniM;6!0,0),
  theMap(MAPPKG1;**;MNniM;6!0,0), theMap(MAPPKG1;**;MNniM;6!0,0),
  theMap(MAPPKG1;**;MNniM;6!0,0), theMap(MAPPKG1;**;MNniM;6!0,0),
  theMap(MAPPKG1;**;MNniM;6!0,0), theMap(MAPPKG1;**;MNniM;6!0,0),
  theMap(MAPPKG1;**;MNniM;6!0,0), theMap(MAPPKG1;**;MNniM;6!0,0),
  theMap(MAPPKG1;**;MNniM;6!0,0)]
                     Type: List (Fraction Integer -> Fraction Integer)

This is a list of applications of those functions.

[f 4 for f in incfns]
  [4,5,6,7,8,9,10,11,12,13,14]
                     Type: List Fraction Integer

Use the recur operation for recursion:

g := recur f means g(n,x) == f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i
                     Type: Void

r := recur(times)
  theMap(MAPPKG1;recur;2M;7!0,0)
                     Type: ((NonNegativeInteger,Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)
  theMap(MAPPKG3;curryRight;MBM;1!0,0)
                     Type: (NonNegativeInteger -> Integer)

fact 4
  24
                     Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==
  raiser := square^n
  raiser m
                     Type: Void

This is 3^(2^3).

mto2ton(3, 3)
6561
Type: Fraction Integer

Here shiftfib is a unary function that modifies its argument.

shiftfib(r: List INT) : INT ==
  t := r.1
  r.1 := r.2
  r.2 := r.2 + t
  t
                     Type: Void

By currying over the argument we get a function with private state.

fibinit: List INT := [0, 1]
  [0,1]
                     Type: List Integer

fibs := curry(shiftfib, fibinit)
  theMap(MAPPKG2;curry;MAM;2!0,0)
                     Type: (() -> Integer)

[fibs() for i in 0..30]
 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
  2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
  317811, 514229, 832040]
                     Type: List Integer

Table Of Contents

This Page