21.12 tetra.input¶
)set expose add con DenavitHartenbergMatrix Bring DH matrices into the
environment
x1:DFLOAT := sqrt(2.0@DFLOAT/3.0@DFLOAT) Set up the coordinates of the
x2:DFLOAT := sqrt(3.0@DFLOAT)/6 corners of the tetrahedron.
- p1 := point [-0.5@DFLOAT, -x2, 0.0@DFLOAT] Some needed points
- p2 := point [0.5@DFLOAT, -x2, 0.0@DFLOAT] p3 := point [0.0@DFLOAT, 2*x2, 0.0@DFLOAT] p4 := point [0.0@DFLOAT, 0.0@DFLOAT, x1]
- baseTriangle := [p2, p1, p3] The base of the tetrahedron
- mt := [0.5@DFLOAT*(p2+p1), 0.5@DFLOAT*(p1+p3), 0.5@DFLOAT*(p3+p2)]
The middle triangle inscribed
in the base of the tetrahedron
bt1 := [mt.1, p1, mt.2] The bases of the triangles of
- bt2 := [p2, mt.1, mt.3] the subdivided tetrahedron
- bt3 := [mt.2, p3, mt.3] bt4 := [0.5@DFLOAT*(p2+p4), 0.5@DFLOAT*(p1+p4), 0.5@DFLOAT*(p3+p4)]
tt1 := tri2tri(baseTriangle, bt1) Create the transformations
tt2 := tri2tri(baseTriangle, bt2) that bring the base of the
tt3 := tri2tri(baseTriangle, bt3) tetrahedron to the bases of
tt4 := tri2tri(baseTriangle, bt4) the subdivided tetrahedron
drawPyramid(n) == Draw a Sierpinsky tetrahedron
- s := createThreeSpace() with n levels of recursive
- dh := rotatex(0.0@DFLOAT) subdivision drawPyramidInner(s, n, dh) makeViewport3D(s, “Sierpinsky Tetrahedron”)
- drawPyramidInner(s, n, dh) == Recursively draw a Sierpinsky
- n = 0 => makeTetrahedron(s, dh, n) tetrahedron
- drawPyramidInner(s, n-1, dh * tt1) Draw the 4 recursive pyramids
- drawPyramidInner(s, n-1, dh tt2) drawPyramidInner(s, n-1, dh tt3) drawPyramidInner(s, n-1, dh * tt4)
makeTetrahedron(sp, dh, color) == Draw a tetrahedron into the
w1 := dh*p1 given space with the given
w2 := dh*p2 color, transforming it by
- w3 := dh*p3 the given DH matrix
- w4 := dh*p4 polygon(sp, [w1, w2, w4]) polygon(sp, [w1, w3, w4]) polygon(sp, [w2, w3, w4]) void()
Sierpinsky’s Tetrahedron