9.91 ZeroDimensionalSolvePackageΒΆ

The ZeroDimensionalSolvePackage package constructor provides operations for computing symbolically the complex or real roots of zero-dimensional algebraic systems.

The package provides no multiplicity information (i.e. some returned roots may be double or higher) but only distinct roots are returned.

Complex roots are given by means of univariate representations of irreducible regular chains. These representations are computed by the univariateSolveunivariateSolveZeroDimensionalSolvePackage operation (by calling the InternalRationalUnivariateRepresentationPackage package constructor which does the job).

Real roots are given by means of tuples of coordinates lying in the RealClosure of the coefficient ring. They are computed by the realSolverealSolveZeroDimensionalSolvePackage and positiveSolvepositiveSolveZeroDimensionalSolvePackage operations. The former computes all the solutions of the input system with real coordinates whereas the later concentrate on the solutions with (strictly) positive coordinates. In both cases, the computations are performed by the RealClosure constructor.

Both computations of complex roots and real roots rely on triangular decompositions. These decompositions can be computed in two different ways. First, by a applying the zeroSetSplitzeroSetSplitRegularTriangularSet operation from the REGSET domain constructor. In that case, no Groebner bases are computed. This strategy is used by default. Secondly, by applying the zeroSetSplitzeroSetSplitLexTriangularPackage from LEXTRIPK. To use this later strategy with the operations univariateSolveunivariateSolveZeroDimensionalSolvePackage, realSolverealSolveZeroDimensionalSolvePackage and positiveSolvepositiveSolveZeroDimensionalSolvePackage one just needs to use an extra boolean argument.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

The ZeroDimensionalSolvePackage constructor takes three arguments. The first one R is the coefficient ring; it must belong to the categories OrderedRing, EuclideanDomain, CharacteristicZero and RealConstant. This means essentially that R is Integer or Fraction(Integer). The second argument ls is the list of variables involved in the systems to solve. The third one MUST BE concat(ls,s) where s is an additional symbol used for the univariate representations. The abbreviation for ZeroDimensionalSolvePackage is ZDSOLVE.

We illustrate now how to use the constructor ZDSOLVE by two examples: the Arnborg and Lazard system and the L-3 system (Aubry and Moreno Maza). Note that the use of this package is also demonstrated in the example of the LexTriangularPackage constructor.

Define the coefficient ring.

R := Integer
\[\]
Integer

Type: Domain

Define the lists of variables:

ls : List Symbol := [x,y,z,t]
\[\]
[x,y,z,t]

Type: List Symbol

and:

ls2 : List Symbol := [x,y,z,t,new()$Symbol]
\[\]
[x,y,z,t,%A]

Type: List Symbol

Call the package:

pack := ZDSOLVE(R,ls,ls2)
\[\]
failed to identify token in skiptok ZeroDimensionalSolvePackage(Integer,[x,y,z,t],[x,y,z,t

Type: Domain

Define a polynomial system (Arnborg-Lazard)

p1 := x^2*y*z + x*y^2*z + x*y*z^2 + x*y*z + x*y + x*z + y*z
\[\]
xyz2+(xy2+(x2+x+1)y+x)z+xy

Type: Polynomial Integer

p2 := x^2*y^2*z + x*y^2*z^2 + x^2*y*z + x*y*z + y*z + x + z
\[\]
xy2z2+(x2y2+(x2+x+1)y+1)z+x

Type: Polynomial Integer

p3 := x^2*y^2*z^2 + x^2*y^2*z + x*y^2*z + x*y*z + x*z + z + 1
\[\]
x2y2z2+((x2+x)y2+xy+x+1)z+1

Type: Polynomial Integer

lp := [p1, p2, p3]
\[\]
[xyz2+(xy2+(x2+x+1)y+x)z+xy,xy2z2+(x2y2+(x2+x+1)y+1)z+x,x2y2z2+((x2+x)y2+xy+x+1)z+1]

Type: List Polynomial Integer

Note that these polynomials do not involve the variable t; we will use it in the second example.

First compute a decomposition into regular chains (i.e. regular triangular sets).

triangSolve(lp)$pack
\[\]
[{z20-6z19-41z18+71z17+106z16+92z15+197z14+145z13+257z12+278z11+201z10+278z9+257z8+145z7+197z6+92z5+106z4+71z3-41z2-6z+1,(14745844z19+50357474z18-130948857z17-185261586z16-180077775z15-338007307z14-275379623z13-453190404z12-474597456z11-366147695z10-481433567z9-430613166z8-261878358z7-326073537z6-163008796z5-177213227z4-104356755z3+65241699z2+9237732z-1567348)y+1917314z19+6508991z18-16973165z17-24000259z16-23349192z15-43786426z14-35696474z13-58724172z12-61480792z11-47452440z10-62378085z9-55776527z8-33940618z7-42233406z6-21122875z5-22958177z4-13504569z3+8448317z2+1195888z-202934,((z3-2z)y2+(-z3-z2-2z-1)y-z2-z+1)x+z2-1}]

Type: List RegularChain(Integer,[x,y,z,t])

We can see easily from this decomposition (consisting of a single regular chain) that the input system has 20 complex roots.

Then we compute a univariate representation of this regular chain.

univariateSolve(lp)$pack
\[\]
[[complexRoots=?12-12?11+24?10+4?9-9?8+27?7-21?6+27?5-9?4+4?3+24?2-12?+1,coordinates=[63x+62%A11-721%A10+1220%A9+705%A8-285%A7+1512%A6-735%A5+1401%A4-21%A3+215%A2+1577%A-142,63y-75%A11+890%A10-1682%A9-516%A8+588%A7-1953%A6+1323%A5-1815%A4+426%A3-243%A2-1801%A+679,z-%A]],[complexRoots=?6+?5+?4+?3+?2+?+1,coordinates=[x-%A5,y-%A3,z-%A]],[complexRoots=?2+5?+1,coordinates=[x-1,y-1,z-%A]]]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer, coordinates: List Polynomial Integer)

We see that the zeros of our regular chain are split into three components. This is due to the use of univariate polynomial factorization.

Each of these components consist of two parts. The first one is an irreducible univariate polynomial p(?) which defines a simple algebraic extension of the field of fractions of R. The second one consists of multivariate polynomials pol1(x,%A), pol2(y,%A) and pol3(z,%A). Each of these polynomials involve two variables: one is an indeterminate x, y or z of the input system lp and the other is %A which represents any root of p(?). Recall that this %A is the last element of the third parameter of ZDSOLVE. Thus any complex root ? of p(?) leads to a solution of the input system lp by replacing %A by this ? in pol1(x,%A), pol2(y,%A) and pol3(z,%A). Note that the polynomials pol1(x,%A), pol2(y,%A) and pol3(z,%A) have degree one w.r.t. x, y or z respectively. This is always the case for all univariate representations. Hence the operation univariateSolve replaces a system of multivariate polynomials by a list of univariate polynomials, what justifies its name. Another example of univariate representations illustrates the LexTriangularPackage package constructor.

We now compute the solutions with real coordinates:

lr := realSolve(lp)$pack
\[\]
[[%B1,11844591645371%B119-2335702548457%B118-5460230182819%B117+799003781645371%B116+43953929548457%B115+13420192182819%B114+5539863731%B113+1933813781645371%B112+35978916182819%B111+3586607811645371%B110+2716676661645371%B19+118784873548457%B18+3375050201645371%B17+138937011193%B16+6882914459%B15+337800242189%B14+1406718761645371%B13+32325724548457%B12-8270343%B1-97415321645371,-91729705159%B119+487915705159%B118+4114333705159%B117-1276987235053%B116-13243117705159%B115-16292173705159%B114-26536060705159%B113-72271418081%B112-5382578100737%B111-15449995235053%B110-14279770235053%B19-6603890100737%B18-4099306027%B17-37340389705159%B16-34893715705159%B15-26686318705159%B14-80151126117%B13-17206178705159%B12-4406102705159%B1+377534705159],

[%B2,11844591645371%B219-2335702548457%B218-5460230182819%B217+799003781645371%B216+43953929548457%B215+13420192182819%B214+5539863731%B213+1933813781645371%B212+35978916182819%B211+3586607811645371%B210+2716676661645371%B29+118784873548457%B28+3375050201645371%B27+138937011193%B26+6882914459%B25+337800242189%B24+1406718761645371%B23+32325724548457%B22-8270343%B2-97415321645371,-91729705159%B219+487915705159%B218+4114333705159%B217-1276987235053%B216-13243117705159%B215-16292173705159%B214-26536060705159%B213-72271418081%B212-5382578100737%B211-15449995235053%B210-14279770235053%B29-6603890100737%B28-4099306027%B27-37340389705159%B26-34893715705159%B25-26686318705159%B24-80151126117%B23-17206178705159%B22-4406102705159%B2+377534705159], [%B3,11844591645371%B319-2335702548457%B318-5460230182819%B317+799003781645371%B316+43953929548457%B315+13420192182819%B314+5539863731%B313+1933813781645371%B312+35978916182819%B311+3586607811645371%B310+2716676661645371%B39+118784873548457%B38+3375050201645371%B37+138937011193%B36+6882914459%B35+337800242189%B34+1406718761645371%B33+32325724548457%B32-8270343%B3-97415321645371,-91729705159%B319+487915705159%B318+4114333705159%B317-1276987235053%B316-13243117705159%B315-16292173705159%B314-26536060705159%B313-72271418081%B312-5382578100737%B311-15449995235053%B310-14279770235053%B39-6603890100737%B38-4099306027%B37-37340389705159%B36-34893715705159%B35-26686318705159%B34-80151126117%B33-17206178705159%B32-4406102705159%B3+377534705159], [%B4,11844591645371%B419-2335702548457%B418-5460230182819%B417+799003781645371%B416+43953929548457%B415+13420192182819%B414+5539863731%B413+1933813781645371%B412+35978916182819%B411+3586607811645371%B410+2716676661645371%B49+118784873548457%B48+3375050201645371%B47+138937011193%B46+6882914459%B45+337800242189%B44+1406718761645371%B43+32325724548457%B42-8270343%B4-97415321645371,-91729705159%B419+487915705159%B418+4114333705159%B417-1276987235053%B416-13243117705159%B415-16292173705159%B414-26536060705159%B413-72271418081%B412-5382578100737%B411-15449995235053%B410-14279770235053%B49-6603890100737%B48-4099306027%B47-37340389705159%B46-34893715705159%B45-26686318705159%B44-80151126117%B43-17206178705159%B42-4406102705159%B4+377534705159], [%B5,11844591645371%B519-2335702548457%B518-5460230182819%B517+799003781645371%B516+43953929548457%B515+13420192182819%B514+5539863731%B513+1933813781645371%B512+35978916182819%B511+3586607811645371%B510+2716676661645371%B59+118784873548457%B58+3375050201645371%B57+138937011193%B56+6882914459%B55+337800242189%B54+1406718761645371%B53+32325724548457%B52-8270343%B5-97415321645371,-91729705159%B519+487915705159%B518+4114333705159%B517-1276987235053%B516-13243117705159%B515-16292173705159%B514-26536060705159%B513-72271418081%B512-5382578100737%B511-15449995235053%B510-14279770235053%B59-6603890100737%B58-4099306027%B57-37340389705159%B56-34893715705159%B55-26686318705159%B54-80151126117%B53-17206178705159%B52-4406102705159%B5+377534705159], [%B6,11844591645371%B619-2335702548457%B618-5460230182819%B617+799003781645371%B616+43953929548457%B615+13420192182819%B614+5539863731%B613+1933813781645371%B612+35978916182819%B611+3586607811645371%B610+2716676661645371%B69+118784873548457%B68+3375050201645371%B67+138937011193%B66+6882914459%B65+337800242189%B64+1406718761645371%B63+32325724548457%B62-8270343%B6-97415321645371,-91729705159%B619+487915705159%B618+4114333705159%B617-1276987235053%B616-13243117705159%B615-16292173705159%B614-26536060705159%B613-72271418081%B612-5382578100737%B611-15449995235053%B610-14279770235053%B69-6603890100737%B68-4099306027%B67-37340389705159%B66-34893715705159%B65-26686318705159%B64-80151126117%B63-17206178705159%B62-4406102705159%B6+377534705159], [%B7,11844591645371%B719-2335702548457%B718-5460230182819%B717+799003781645371%B716+43953929548457%B715+13420192182819%B714+5539863731%B713+1933813781645371%B712+35978916182819%B711+3586607811645371%B710+2716676661645371%B79+118784873548457%B78+3375050201645371%B77+138937011193%B76+6882914459%B75+337800242189%B74+1406718761645371%B73+32325724548457%B72-8270343%B7-97415321645371,-91729705159%B719+487915705159%B718+4114333705159%B717-1276987235053%B716-13243117705159%B715-16292173705159%B714-26536060705159%B713-72271418081%B712-5382578100737%B711-15449995235053%B710-14279770235053%B79-6603890100737%B78-4099306027%B77-37340389705159%B76-34893715705159%B75-26686318705159%B74-80151126117%B73-17206178705159%B72-4406102705159%B7+377534705159], [%B8,11844591645371%B819-2335702548457%B818-5460230182819%B817+799003781645371%B816+43953929548457%B815+13420192182819%B814+5539863731%B813+1933813781645371%B812+35978916182819%B811+3586607811645371%B810+2716676661645371%B89+118784873548457%B88+3375050201645371%B87+138937011193%B86+6882914459%B85+337800242189%B84+1406718761645371%B83+32325724548457%B82-8270343%B8-97415321645371,-91729705159%B819+487915705159%B818+4114333705159%B817-1276987235053%B816-13243117705159%B815-16292173705159%B814-26536060705159%B813-72271418081%B812-5382578100737%B811-15449995235053%B810-14279770235053%B89-6603890100737%B88-4099306027%B87-37340389705159%B86-34893715705159%B85-26686318705159%B84-80151126117%B83-17206178705159%B82-4406102705159%B8+377534705159]]

Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

# lr
\[\]
8

Type: PositiveInteger

Each of these real solutions is given by a list of elements in RealClosure(R). In these 8 lists, the first element is a value of z, the second of y and the last of x. This is logical since by setting the list of variables of the package to [x,y,z,t] we mean that the elimination ordering on the variables is t < z < y < x . Note that each system treated by the ZDSOLVE package constructor needs only to be zero-dimensional w.r.t. the variables involved in the system it-self and not necessarily w.r.t. all the variables used to define the package.

We can approximate these real numbers as follows. This computation takes between 30 sec. and 5 min, depending on your machine.

[ [approximate(r,1/1000000) for r in point] for point in lr]
\[\]
[[-100480592097152,(4503057316985387943524397913838966414596731976211768219335881208385516314058924567176091423629695777403099833360761048898228916578137094309838597331137202584846939132376157019506760357601165917454986815382098789094851523420392811293126141329856546977145464661495487825919941188447041722440491921567263542158028061437758844364634410045253024786561923163288214175)(4503057283025245488516511806985826635083100693757320465280554706865644949577509916867201889438090408354817931718593862797624551518983570793048774424291488708829840324189200301436123314860200821443733790755311243632919864895421704228949571290016119498807957023663865443069392027148979688266712323356043491523434068924275280417338574817381189277066143312396681216,)

(21062607688234750738947986804860165962496071486906855387636837150206396808586496507900558895056468933094470970999378021873290953258987852472490207175049836604820751566187387245146853330600112029646351663813515432559822002503052839810868371106148423070260912112979298768962856818304790547600563807626649056184620553060478161917820115887037891389881895)(21062606094984641924721138048164741753419629532964341024139031423687579676852738885855909759652117788621898728819539436402462973570619598123261036597990251268632586765672023421068770317101842474841814232889218376812370627084702957062184859288674007719378284992009237605933141689010006663738963475981182285567310370720264744967762283837629939232800768)], [-25630132097152,(-2611346176791927789698617693237757719238259963063541781922752330440189899668072928338490768623593207442125925986733815932243504809294837523030237337236806668167446173001727271353311571242897)(1165225400505222530583981916004589143757226610276858990008790134819914940922413753983971394019523433320408139928153188829495755455163963417619308395977544797140231469234269034921938055593984,) (35725945502759172210965887296157882729985170546756032395781981410060340917352828265906219023044669639419710389233045262733293163737574500619789892286110976997087250466235373)(10395482693455989368770712448340260558008145511201705922005223665917594096594864423391410294529502651799899601048118758225302053465051315812439017247289173865014702966308864)], [-17159672097152,(-421309353378430352108483951797708239037726150396958622482899843660603065607635937456481377349837660312126782256580143620693951995146518222580524697287410022543952491)(944181414418537445864969203434922405243659747096625366393064196079580588258549319984019169991765944326482464113518738358388814786734019307857605820364195856822304768,) (76358333471126442225156254244108312253474756690085893388341621725019049943763467308768090428452089199199253021057209714539189827313890725914035)(262418876408609719978429761047806663393423046789585160227858097850378454920578849901964060226696602689158010354356762503901862988714128491675648)], [-4377012097152,(168310690863834958832217233265422591356298631318195103145275016144149747345532815072136486835557964678160350777719907507783521336648453365491383623741304759)(168310686809521338900170998270591363896307766873122611116778518800490742522629868032588781096261414029859736698426488799890837706879999845423381649008099328,) (496155010983501018642268101342210873595871480100376063970796809664691282670847283444311723917219104249213450966312411133)(496154987275773831550919207821020902985289711861109712623638404082937659261914313170254867464792718363492160482442215424)], [2228012097152,(-8994884880402428265107595121970691427136045692541978275573001865213759921588137716696126349101655220195142994932299137183241705867672383477)(1167889998665026372177765100691888582708969960229934769690835752457077779416435209473767866507769405888942764587718542434255625992456372224,) (-2389704888133156878320801544373808395612771509208491019847452991885509546519525467839016613593999693886640036283570552321155037871291458703265)(5355487273645096326090403286689931905988225444685411433221593833681192957562833671468654290340746993656285925599117602120446183443145479421952)], [7656932097152,(8558969219816716267873244761178198088724698958616670140213765754322002303251685786118678330840203328837654339523418704917749518340772512899000391009630373148561)(29414424455330107909764284113763934998155802159458569179064525354957230138568189417023302287798901412962367211381542319972389173221567119652444639331719460159488,) (-20576182305825721012476503248602425611113025815435888088439236627675493822416593627122907776128001929214205744089480851937436885827622246433251878894899015)(2671598203325735538097952353501450220576313759890835097091722520642710198771902667183948906289863714759678360292483949204616471537777775324180661095366656)], [57438792097152,(107628881696890684795554639477357020817145672494261861402366312357476896085043426397139807254659277266215883344979769861745539788756290007298476800060834355318980169340872720504761255988923275756383052868895353542180948277105891754260289006094194962087408300785836666945350176624841488732463225)(31317689570803179466484619400235520441903766134585849862285496319161966016162197817656155325322947465296482764305838108940793745664607578231468885811955560292085152188388832003186584074693994260632605898286123092315966691297079864813198515719429272303406229340239234867030420681530440845099008,) (-2113286699185750918364120475565458437870172489865485994389828135335264444665284557526492734931691731407872701432935503473348172076098720545849008780077564160534317894688366119529739980502944162668550098127961950496210221942878089359674925850594427768502251789758706752831632503615)(16276155849379875802429066243471045808891444661684597180431538394083725255333098080703636995855022160112110871032636095510260277694140873911481262211681397816825874380753225914661319399754572005223498385689642856344480185620382723787873544601061061415180109356172051706396253618176)], [197398772097152,(-29972499368327033037990158048615209492150403875007071777012857667201925305794224789535660243598601431015478016380827716111603722128748477780358098728431492254842383658580136293417053217025823333509180096017899370239859353049004604933898738370308534103470899088808148539811320184645824588006153947707416994872958759602107502158919488144768548710315309312954673321901337026710982009022823005107518607185928457030277807397796525813862762239286996106809728023675)(230843327485227859072891008119181102390650414132143264612393679487393331927060896070213819341764789836062022951917663293763178685145501476602720625902225250555174182368889688380663660257443176047224029209319672947516024726883412114189331884872866184443492728728511289708076755286489505658586403317856591038706500611280151640352274103736099055605447694952705922707080959304949125751955470887925959552929920110858560812556635485429471554031675979542656381353984,) (-512818926354822848909627639786894008060093841066308045940796633584500926410949052045982531625008472301004703502449743652303892581895928931293158470135392762143543439867426304729390912285013385199069649023156609437199433379507078262401172758774998929661127731837229462420711653791043655457414608288470130554391262041935488541073594015777589660282236457586461183151294397397471516692046506185060376287516256195847052412587282839139194642913955)(228828193977843933053120879318129047118363109245536899038639082424350946364423624977308064743898773914492160779468265385174118909171174186814511497833728419182249767586835872948664473085662255268720920372441180048140570283719831064229127567619577461444381599671350262939174978359004147086012775237299648862774267248762248006326880888932489185084249493434733760307593998026820848290485967817775144465749979827872616963053217673201717237252096)]]

Type: List List Fraction Integer

We can also concentrate on the solutions with real (strictly) positive coordinates:

lpr := positiveSolve(lp)$pack
\[\]
[]

Type: List List RealClosure Fraction Integer

Thus we have checked that the input system has no solution with strictly positive coordinates.

Let us define another polynomial system (L-3).

f0 := x^3 + y + z + t- 1
\[\]
z+y+x3+t-1

Type: Polynomial Integer

f1 := x + y^3 + z + t -1
\[\]
z+y3+x+t-1

Type: Polynomial Integer

f2 := x + y + z^3 + t-1
\[\]
z3+y+x+t-1

Type: Polynomial Integer

f3 := x + y + z + t^3 -1
\[\]
z+y+x+t3-1

Type: Polynomial Integer

lf := [f0, f1, f2, f3]
\[\]
[z+y+x3+t-1,z+y3+x+t-1,z3+y+x+t-1,z+y+x+t3-1]

Type: List Polynomial Integer

First compute a decomposition into regular chains (i.e. regular triangular sets).

lts := triangSolve(lf)$pack
\[\]
[{t2+t+1,z3-z-t3+t,(3z+3t3-3)y2+(3z2+(6t3-6)z+3t6-6t3+3)y+(3t3-3)z2+(3t6-6t3+3)z+t9-3t6+5t3-3t,x+y+z},{t16-6t13+9t10+4t7+15t4-54t2+27,

(4907232t15+40893984t14-115013088t13+22805712t12+36330336t11+162959040t10-159859440t9-156802608t8+117168768t7+126282384t6-129351600t5+306646992t4+475302816t3-1006837776t2-237269088t+480716208)z+ (3z+3t3-3)y2+(3z2+(6t3-6)z+3t6-6t3+3)y+(3t3-3)z2+(3t6-6t3+3)z+t9-3t6+5t3-3t,x+y+z+t3-1},{t,z-1,y2-1,x+y},{t-1,z,y2-1,x+y},{t-1,z2-1,zy+1,x},{t16-6t13+9t10+4t7+15t4-54t2+27, (4907232t29+40893984t28-115013088t27-1730448t26-168139584t25+738024480t24-195372288t23+315849456t22-2567279232t21+937147968t20+1026357696t19+4780488240t18-2893767696t17-5617160352t16-3427651728t15+5001100848t14+8720098416t13+2331732960t12-499046544t11-16243306272t10-9748123200t9+3927244320t8+25257280896t7+10348032096t6-17128672128t5-14755488768t4+544086720t3+10848188736t2+1423614528t-2884297248)z- 48t68+1152t65-13560t62+360t60+103656t59-7560t57-572820t56+71316t54+2414556t53+2736t52-402876t51-7985131t50-49248t49+1431133t48+20977409t47+521487t46-2697635t45-43763654t44-3756573t43-2093410t42+71546495t41+19699032t40+35025028t39-89623786t38-77798760t37-138654191t36+87596128t35+235642497t34+349607642t33-93299834t32-551563167t31-630995176t30+186818962t29+995427468t28+828416204t27-393919231t26-1076617485t25-1609479791t24+595738126t23+1198787136t22+4342832069t21-2075938757t20-4390835799t19-4822843033t18+6932747678t17+6172196808t16+1141517740t15-4981677585t14-9819815280t13-7404299976t12-157295760t11+29124027630t10+14856038208t9-16184101410t8-26935440354t7-3574164258t6+10271338974t5+11191425264t4+6869861262t3-9780477840t2-3586674168t+2884297248, (2395770t7+3934440t6-3902067t5-10084164t4-1010448t3+32386932t2+22413225t-10432368)z-463519t7+3586833t6+9494955t5-8539305t4-33283098t3+35479377t2+46263256t-17419896, (3z4+(9t3-9)z3+(12t6-24t3+9)z2+(-152t3+219t-67)z-41t6+57t4+25t3-57t+16)y+(3t3-3)z4+(9t6-18t3+9)z3+(-181t3+270t-89)z2+(-92t6+135t4+49t3-135t+43)z+27t7-27t6-54t4+396t3-486t+144,x+y+z+t3-1},{t,z-t3+1,y-1,x-1},{t-1,z,y,x},{t,z-1,y,x},{t,z,y-1,x},{t,z,y,x-1}]

Type: List RegularChain(Integer,[x,y,z,t])

Then we compute a univariate representation.

univariateSolve(lf)$pack
\[\]
[[complexRoots=?,coordinates=[x-1,y-1,z+1,t-%A]],[complexRoots=?,coordinates=[x,y-1,z,t-%A]],[complexRoots=?-1,coordinates=[x,y,z,t-%A]],[complexRoots=?,coordinates=[x-1,y,z,t-%A]],[complexRoots=?,coordinates=[x,y,z-1,t-%A]],[complexRoots=?-2,coordinates=[x-1,y+1,z,t-1]],[complexRoots=?,coordinates=[x+1,y-1,z,t-1]],[complexRoots=?-1,coordinates=[x-1,y+1,z-1,t]],[complexRoots=?+1,coordinates=[x+1,y-1,z-1,t]],[complexroots=?6-2?3+3?2-3,coordinates=[2x+%A3+%A-1,2y+%A3+%A-1,z-%A,t-%A]],[complexRoots=?5+3?3-2?2+3?-3,coordinates=[x-%A,y-%A,z+%A3+2%A-1,t-%A]],[complexRoots=?4-?3-2?2+3,coordinates=[x+%A3-%A-1,y+%A3-%A-1,z-%A3+2%A+1,t-%A]],[complexRoots=?+1,coordinates=[x-1,y-1,z,t-%A]],[complexRoots=?6+2?3+3?2-3,coordinates=[2x-%A3-%A-1,y+%A,2z-%A3-%A-1,t+%A]],[complexRoots=?6+12?4+20?3-45?2-42?-953,coordinates=[12609x+23%A5+49%A4-46%A3+362%A2-5015%A-8239,25218y+23%A5+49%A4-46%A3+362%A2+7594%A-8239,25218z+23%A5+49%A4-46%A3+362%A2+7594%A-8239,12609t+23%A5+49%A4-46%A3+362%A2-5015%A-8239]],[complexRoots=?5+12?3-16?2+48?-96,coordinates=[8x+%A3+8%A-8,2y-%A,2z-%A,2t-%A]],[complexRoots=?5+?4-5?3-3?2+9?+3,coordinates=[2x-%A3+2%A-1,2y+%A3-4%A+1,2z-%A3+2%A-1,2t-%A3+2%A-1]],[complexRoots=?4-3?3+4?2-6?+13,coordinates=[9x-2%A3+4%A2-%A+2,9y+%A3-2%A2+5%A-1,9z+%A3-2%A2+5%A-1,9t+%A3-2%A2-4%A-1]],[complexRoots=?4-11?2+37,coordinates=[3x-%A2+7,6y+%A2+3%A-7,3z-%A2+7,6t+%A2-3%A-7]],[complexRoots=?+1,coordinates=[x-1,y,z-1,t+1]],[complexRoots=?+2,coordinates=[x,y-1,z-1,t+1]],[complexRoots=?-2,coordinates=[x,y-1,z+1,t-1]],[complexRoots=?,coordinates=[x,y+1,z-1,t-1]],[complexRoots=?-2,coordinates=[x-1,y,z+1,t-1]],[complexRoots=?,coordinates=[x+1,y,z-1,t-1]],[complexRoots=?4+5?3+16?2+30?+57,coordinates=[151x+15%A3+54%A2+104%A+93,151y-10%A3-36%A2-19%A-62,151z-5%A3-18%A2-85%A-31,151t-5%A3-18%A2-85%A-31]],[complexRoots=?4-?3-2?2+3,coordinates=[x-%A3+2%A+1,y+%A3-%A-1,z-%A,t+%A3-%A-1]],[complexRoots=?4+2?3-8?2+48,coordinates=[8x-%A3+4%A-8,2y+%A,8z+%A3-8%A+8,8t-%A3+4%A-8]],[complexRoots=?5+?4-2?3-4?2+5?+8,coordinates=[3x+%A3-1,3y+%A3-1,3z+%A3-1,t-%A]],[complexRoots=?3+3?-1,coordinates=[x-%A,y-%A,z-%A,t-%A]]]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer, coordinates: List Polynomial Integer)

Note that this computation is made from the input system lf.

However it is possible to reuse a pre-computed regular chain as follows:

ts := lts.1
\[\]
{t2+t+1,z3-z-t3+t,(3z+3t3-3)y2+(3z2+(6t3-6)z+3t6-6t3+3)y+(3t3-3)z2+(3t6-6t3+3)z+t9-3t6+5t3-3t,x+y+z}

Type: RegularChain(Integer,[x,y,z,t])

univariateSolve(ts)$pack
\[\]
[[complexRoots=?4+5?3+16?2+30?+57,pcoordinates=[151x+15%A3+54%A2+104%A+93,151y-10%A3-36%A2-19%A-62,151z-5%A3-18%A2-85%A-31,151t-5%A3-18%A2-85%A-31]],[complexRoots=?4-?3-2?2+3,coordinates=[x-%A3+2%A+1,y+%A3-%A-1,z-%A,t+%A3-%A-1]],[complexRoots=?4+2?3-8?2+48,coordinates=[8x-%A3+4%A-8,2y+%A,8z+%A3-8%A+8,8t-%A3+4%A-8]]]

Type: List Record( complexRoots: SparseUnivariatePolynomial Integer, coordinates: List Polynomial Integer)

realSolve(ts)$pack
\[\]
[]

Type: List List RealClosure Fraction Integer

We compute now the full set of points with real coordinates:

lr2 := realSolve(lf)$pack
\[\]
 

[%B32,127%B3215+227%B3214+127%B3213-427%B3212-1127%B3211-427%B3210+127%B329+1427%B328+127%B327+29%B326+13%B325+29%B324+%B323+43%B322-%B32-2, [%B33,127%B3315+227%B3314+127%B3313-427%B3312-1127%B3311-427%B3310+127%B339+1427%B338+127%B337+29%B336+13%B335+29%B334+%B333+43%B332-%B33-2, [%B34,127%B3415+227%B3414+127%B3413-427%B3412-1127%B3411-427%B3410+127%B349+1427%B348+127%B347+29%B346+13%B345+29%B344+%B343+43%B342-%B34-2, [-1,1,0,1],[-1,1,1,0],[%B23,-154%B2315-127%B2314-154%B2313+227%B2312+1154%B2311+227%B2310-154%B239-727%B238-154%B237-19%B236-16%B235-19%B234-%B233-23%B232+12%B23+32, [%B23,-154%B2315-127%B2314-154%B2313+227%B2312+1154%B2311+227%B2310-154%B239-727%B238-154%B237-19%B236-16%B235-19%B234-%B233-23%B232+12%B23+32, %B31,-%B31+154%B2315+127%B2314+154%B2313-227%B2312-1154%B2311-227%B2310+154%B239+727%B238+154%B237+19%B236+16%B235+19%B234+23%B232-12%B23-12], [%B24,-154%B2415-127%B2414-154%B2413+227%B2412+1154%B2411+227%B2410-154%B249-727%B248-154%B247-19%B246-16%B245-19%B244-%B243-23%B242+12%B24+32, %B28,-%B28+154%B2415+127%B2414+154%B2413-227%B2412-1154%B2411-227%B2410+154%B249+727%B248+154%B247+19%B246+16%B245+19%B244+23%B242-12%B24-12], [%B24,-154%B2415-127%B2414-154%B2413+227%B2412+1154%B2411+227%B2410-154%B249-727%B248-154%B247-19%B246-16%B245-19%B244-%B243-23%B242+12%B24+32, %B29,-%B29+154%B2415+127%B2414+154%B2413-227%B2412-1154%B2411-227%B2410+154%B249+727%B248+154%B247+19%B246+16%B245+19%B244+23%B242-12%B24-12], [%B25,-154%B2515-127%B2514-154%B2513+227%B2512+1154%B2511+227%B2510-154%B259-727%B258-154%B257-19%B256-16%B255-19%B254-%B253-23%B252+12%B25+32, %B26,-%B26+154%B2515+127%B2514+154%B2513-227%B2512-1154%B2511-227%B2510+154%B259+727%B258+154%B257+19%B256+16%B255+19%B254+23%B252-12%B25-12], [%B25,-154%B2515-127%B2514-154%B2513+227%B2512+1154%B2511+227%B2510-154%B259-727%B258-154%B257-19%B256-16%B255-19%B254-%B253-23%B252+12%B25+32, %B27,-%B27+154%B2515+127%B2514+154%B2513-227%B2512-1154%B2511-227%B2510+154%B259+727%B258+154%B257+19%B256+16%B255+19%B254+23%B252-12%B25-12], [1,%B21,-%B21,0],[1,%B22,-%B22,0],[1,%B19,0,-%B19],[1,%B20,0,-%B20],[%B17,-13%B173+13,-13%B173+13,-13%B173+13],[%B18,-13%B183+13,-13%B183+13,-13%B183+13]]

Type: List List RealClosure Fraction Integer

The number of real solutions for the input system is:

#lr2
\[\]
27

Type: PositiveInteger

Another example of computation of real solutions illustrates the LexTriangularPackage package constructor.

We concentrate now on the solutions with real (strictly) positive coordinates:

lpr2 := positiveSolve(lf)$pack
\[\]
[[%B40,-13%B403+13,-13%B403+13,-13%B403+13]]

Type: List List RealClosure Fraction Integer

Finally, we approximate the coordinates of this point with 20 exact digits:

[approximate(r,1/10^21)::Float for r in lpr2.1]
\[\]
[0.32218535462608559291,0.32218535462608559291,0.32218535462608559291,0.32218535462608559291]

Type: List Float