9.51 MappingPackage1¶

Function are objects of type Mapping. In this section we demonstrate some library operations from the packages MappingPackage1, MappingPackage2, and MappingPackage3 that manipulate and create functions. Some terminology: a nullary function takes no arguments, a unary function takes one argument, and a binary function takes two arguments.

We begin by creating an example function that raises a rational number to an integer exponent.

power(q: FRAC INT, n: INT): FRAC INT == q^n

Function declaration power : (Fraction Integer,Integer) ->
Fraction Integer has been added to workspace.


Void

power(2,3)

Compiling function power with type (Fraction Integer,Integer) ->
Fraction Integer


 8

Type: Fraction Integer

The twisttwistMappingPackage3 operation transposes the arguments of a binary function. Here rewop(a, b) is power(b, a).

rewop := twist power


 theMap(...)

Type: ((Integer,Fraction Integer) -> Fraction Integer)

This is 23.

rewop(3, 2)


 8

Type: Fraction Integer

Now we define square in terms of power.

square: FRAC INT -> FRAC INT


Void

The curryRightcurryRightMappingPackage3 operation creates a unary function from a binary one by providing a constant argument on the right.

square:= curryRight(power, 2)


 theMap(...)

Type: (Fraction Integer -> Fraction Integer)

Likewise, the curryLeftcurryLeftMappingPackage3 operation provides a constant argument on the left.

square 4


 16

Type: Fraction Integer

The constantRightconstantRightMappingPackage3 operation creates (in a trivial way) a binary function from a unary one: constantRight(f) is the function g such that g(a,b)= f(a).

squirrel:= constantRight(square)\$MAPPKG3(FRAC INT,FRAC INT,FRAC INT)


 theMap(...)

Type: ((Fraction Integer,Fraction Integer) -> Fraction Integer)

Likewise, constantLeft(f) is the function g such that g(a,b)= f(b).

squirrel(1/2, 1/3)


 14

Type: Fraction Integer

The currycurryMappingPackage2 operation makes a unary function nullary.

sixteen := curry(square, 4/1)


 theMap(...)

Type: (() -> Fraction Integer)

sixteen()


 16

Type: Fraction Integer

The * operation constructs composed functions.

square2:=square*square


 theMap(...)

Type: (Fraction Integer -> Fraction Integer)

square2 3


 81

Type: Fraction Integer

Use the ^ operation to create functions that are n-fold iterations of other functions.

sc(x: FRAC INT): FRAC INT == x + 1

Function declaration sc : Fraction Integer ->
Fraction Integer has been added to workspace.


Void

This is a list of Mapping objects.

incfns := [sc^i for i in 0..10]


 [theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...),theMap(...)]

Type: List (Fraction Integer -> Fraction Integer)

This is a list of applications of those functions.

[f 4 for f in incfns]


 [4,5,6,7,8,9,10,11,12,13,14]

Type: List Fraction Integer

Use the recurrecurMappingPackage1 operation for recursion:

g := recur f means g(n,x) == f(n,f(n-1,...f(1,x))).

times(n:NNI, i:INT):INT == n*i

Function declaration times : (NonNegativeInteger,Integer) ->
Integer has been added to workspace.


Void

r := recur(times)


 theMap(...)

Type: ((NonNegativeInteger,Integer) -> Integer)

This is a factorial function.

fact := curryRight(r, 1)


 theMap(...)

Type: (NonNegativeInteger -> Integer)

fact 4


 24

Type: PositiveInteger

Constructed functions can be used within other functions.

mto2ton(m, n) ==
raiser := square^n
raiser m


Void

This is 323.

mto2ton(3, 3)

Compiling function mto2ton with type (PositiveInteger,
PositiveInteger) -> Fraction Integer


 6561

Type: Fraction Integer

Here shiftfib is a unary function that modifies its argument.

shiftfib(r: List INT) : INT ==
t := r.1
r.1 := r.2
r.2 := r.2 + t
t
Function declaration shiftfib : List Integer -> Integer


Void

By currying over the argument we get a function with private state.

fibinit: List INT := [0, 1]


 [0,1]

Type: List Integer

fibs := curry(shiftfib, fibinit)


 theMap(...)

Type: (() -> Integer)

[fibs() for i in 0..30]


 [0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040]

Type: List Integer