9.42 LieExponentialsΒΆ
a: Symbol := 'a
\[\]
a |
Type: Symbol
b: Symbol := 'b
\[\]
b |
Type: Symbol
Declarations of domains
coef := Fraction(Integer)
\[\]
FractionInteger |
Type: Domain
group := LieExponentials(Symbol, coef, 3)
\[\]
LieExponentials(Symbol,FractionInteger,3) |
Type: Domain
lpoly := LiePolynomial(Symbol, coef)
\[\]
LiePolynomial(Symbol,FractionInteger) |
Type: Domain
poly := XPBWPolynomial(Symbol, coef)
\[\]
XPBWPolynomial(Symbol,FractionInteger) |
Type: Domain
Calculations
ea := exp(a::lpoly)$group
\[\]
e[a] |
Type: LieExponentials(Symbol,Fraction Integer,3)
eb := exp(b::lpoly)$group
\[\]
e[b] |
Type: LieExponentials(Symbol,Fraction Integer,3)
g: group := ea*eb
\[\]
e[b]e(12[ab2])e[ab]e(12[a2b])e[a] |
Type: LieExponentials(Symbol,Fraction Integer,3)
g :: poly
\[\]
1+[a]+[b]+12[a][a]+[ab]+[b][a]+12[b][b]+16[a][a][a]+12[a2b]+[ab][a]+12[ab2]+12[b][a][a]+[b][ab]+12[b][b][a]+16[b][b][b] |
Type: XPBWPolynomial(Symbol,Fraction Integer)
log(g)$group
\[\]
[a]+[b]+12[ab]+112[a2b]+112[ab2] |
Type: LiePolynomial(Symbol,Fraction Integer)
g1: group := inv(g)
\[\]
e(-[b])e(-[a]) |
Type: LieExponentials(Symbol,Fraction Integer,3)
g*g1
\[\]
1 |
Type: LieExponentials(Symbol,Fraction Integer,3)