9.39 LexTriangularPackageΒΆ

The LexTriangularPackage package constructor provides an implementation of the lexTriangular algorithm (D. Lazard Solving Zero-dimensional Algebraic Systems, J. of Symbol. Comput., 1992). This algorithm decomposes a zero-dimensional variety into zero-sets of regular triangular sets. Thus the input system must have a finite number of complex solutions. Moreover, this system needs to be a lexicographical Groebner basis.

This package takes two arguments: the coefficient-ring R of the polynomials, which must be a GcdDomain and their set of variables given by ls a List Symbol. The type of the input polynomials must be NewSparseMultivariatePolynomial(R,V) where V is OrderedVariableList(ls). The abbreviation for LexTriangularPackage is LEXTRIPK. The main operations are lexTriangularlexTriangularLexTriangularPackage and squareFreeLexTriangularsquareFreeLexTriangularLexTriangularPackage. The later provide decompositions by means of square-free regular triangular sets, built with the SREGSET constructor, whereas the former uses the REGSET constructor. Note that these constructors also implement another algorithm for solving algebraic systems by means of regular triangular sets; in that case no computations of Groebner bases are needed and the input system may have any dimension (i.e. it may have an infinite number of solutions).

The implementation of the lexTriangular algorithm provided in the LexTriangularPackage constructor differs from that reported in Computations of gcd over algebraic towers of simple extensions by M. Moreno Maza and R. Rioboo (in proceedings of AAECC11, Paris, 1995). Indeed, the squareFreeLexTriangularsquareFreeLexTriangularLexTriangularPackage operation removes all multiplicities of the solutions (i.e. the computed solutions are pairwise different) and the lexTriangularlexTriangularLexTriangularPackage operation may keep some multiplicities; this later operation runs generally faster than the former.

The interest of the lexTriangular algorithm is due to the following experimental remark. For some examples, a triangular decomposition of a zero-dimensional variety can be computed faster via a lexicographical Groebner basis computation than by using a direct method (like that of SREGSET and REGSET). This happens typically when the total degree of the system relies essentially on its smallest variable (like in the Katsura systems). When this is not the case, the direct method may give better timings (like in the Rose system).

Of course, the direct method can also be applied to a lexicographical Groebner basis. However, the lexTriangular algorithm takes advantage of the structure of this basis and avoids many unnecessary computations which are performed by the direct method.

For this purpose of solving algebraic systems with a finite number of solutions, see also the ZeroDimensionalSolvePackage. It allows to use both strategies (the lexTriangular algorithm and the direct method) for computing either the complex or real roots of a system.

Note that the way of understanding triangular decompositions is detailed in the example of the RegularTriangularSet constructor.

Since the LEXTRIPK package constructor is limited to zero-dimensional systems, it provides a zeroDimensional?zeroDimensional?LexTriangularPackage operation to check whether this requirement holds. There is also a groebnergroebnerLexTriangularPackage operation to compute the lexicographical Groebner basis of a set of polynomials with type NewSparseMultivariatePolynomial(R,V). The elimination ordering is that given by ls (the greatest variable being the first element of ls). This basis is computed by the FLGM algorithm (Faugere et al. Efficient Computation of Zero-Dimensional Groebner Bases by Change of Ordering , J. of Symbol. Comput., 1993) implemented in the LinGroebnerPackage package constructor. Once a lexicographical Groebner basis is computed, then one can call the operations lexTriangularlexTriangularLexTriangularPackage and squareFreeLexTriangularsquareFreeLexTriangularLexTriangularPackage. Note that these operations admit an optional argument to produce normalized triangular sets. There is also a zeroSetSplitzeroSetSplitLexTriangularPackage operation which does all the job from the input system; an error is produced if this system is not zero-dimensional.

Let us illustrate the facilities of the LEXTRIPK constructor by a famous example, the cyclic-6 root system.

Define the coefficient ring.

R := Integer
\[\]
Integer

Type: Domain

Define the list of variables,

ls : List Symbol := [a,b,c,d,e,f]
\[\]
[a,b,c,d,e,f]

Type: List Symbol

and make it an ordered set.

V := OVAR(ls)
\[\]
OrderedVariableList[a,b,c,d,e,f]

Type: Domain

Define the polynomial ring.

P := NSMP(R, V)
\[\]
NewSparseMultivariatePolynomial(Integer,OrderedVariableList[a,b,c,d,e,f])

Type: Domain

Define the polynomials.

p1: P := a*b*c*d*e*f - 1
\[\]
fedcba-1

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

p2: P := a*b*c*d*e +a*b*c*d*f +a*b*c*e*f +a*b*d*e*f

+a*c*d*e*f +b*c*d*e*f

\[\]
((((e+f)d+fe)c+fed)b+fedc)a+fedcb

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

p3: P := a*b*c*d + a*b*c*f + a*b*e*f + a*d*e*f + b*c*d*e
  • c*d*e*f
\[\]
(((d+f)c+fe)b+fed)a+edcb+fedc

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

p4: P := a*b*c + a*b*f + a*e*f + b*c*d + c*d*e + d*e*f
\[\]
((c+f)b+fe)a+dcb+edc+fed

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

p5: P := a*b + a*f + b*c + c*d + d*e + e*f
\[\]
(b+f)a+cb+dc+ed+fe

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

p6: P := a + b + c + d + e + f
\[\]
a+b+c+d+e+f

Type: NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

lp := [p1, p2, p3, p4, p5, p6]
\[\]
[fedcba-1,((((e+f)d+fe)c+fed)b+fedc)a+fedcb,(((d+f)c+fe)b+fed)a+edcb+fedc,((c+f)b+fe)a+dcb+edc+fed,(b+f)a+cb+dc+ed+fe,a+b+c+d+e+f]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Now call LEXTRIPK .

lextripack := LEXTRIPK(R,ls)
\[\]
LexTriangularPackage(Integer,[a,b,c,d,e,f])

Type: Domain

Compute the lexicographical Groebner basis of the system. This may take between 5 minutes and one hour, depending on your machine.

lg := groebner(lp)$lextripack
\[\]
[a+b+c+d+e+f,3968379498283200b2+15873517993132800fb+3968379498283200d2+15873517993132800fd+3968379498283200f3e5-15873517993132800f4e4+23810276989699200f5e3+(206355733910726400f6+230166010900425600)e2+(-729705987316687f43+1863667496867205421f37+291674853771731104461f31+365285994691106921745f25+549961185828911895f19-365048404038768439269f13-292382820431504027669f7-2271898467631865497f)e-3988812642545399f44+10187423878429609997f38+1594377523424314053637f32+1994739308439916238065f26+1596840088052642815f20-1993494118301162145413f14-1596049742289689815053f8-11488171330159667449f2,(23810276989699200c-23810276989699200f)b+23810276989699200c2+71430830969097600fc-23810276989699200d2-95241107958796800fd-55557312975964800f3e5+174608697924460800f4e4-174608697924460800f5e3+(-2428648252949318400f6-2611193709870345600)e2+(8305444561289527f43-21212087151945459641f37-3319815883093451385381f31-4157691646261657136445f25-6072721607510764095f19+4154986709036460221649f13+3327761311138587096749f7+25885340608290841637f)e+45815897629010329f44-117013765582151891207f38-18313166848970865074187f32-22909971239649297438915f26-16133250761305157265f20+22897305857636178256623f14+18329944781867242497923f8+130258531002020420699f2,(7936758996566400d-7936758996566400f)b-7936758996566400fd-7936758996566400f3e5+23810276989699200f4e4-23810276989699200f5e3+(-337312257354072000f6-369059293340337600)e2+(1176345388640471f43-3004383582891473073f37-470203502707246105653f31-588858183402644348085f25-856939308623513535f19+588472674242340526377f13+471313241958371103517f7+3659742549078552381f)e+6423170513956901f44-16404772137036480803f38-2567419165227528774463f32-3211938090825682172335f26-2330490332697587485f20+3210100109444754864587f14+2569858315395162617847f8+18326089487427735751f2,(11905138494849600e-11905138494849600f)b-3968379498283200f3e5+15873517993132800f4e4-27778656487982400f5e3+(-208339923659868000f6-240086959646133600)e2+(786029984751110f43-2007519008182245250f37-314188062908073807090f31-393423667537929575250f25-550329120654394950f19+393196408728889612770f13+314892372799176495730f7+2409386515146668530f)e+4177638546747827f44-10669685294602576381f38-1669852980419949524601f32-2089077057287904170745f26-1569899763580278795f20+2087864026859015573349f14+1671496085945199577969f8+11940257226216280177f2,(11905138494849600f6-11905138494849600)b-15873517993132800f2e5+39683794982832000f3e4-39683794982832000f4e3+(-686529653202993600f11-607162063237329600f5)e2+(65144531306704f42-166381280901088652f36-26033434502470283472f30-31696259583860650140f24+971492093167581360f18+32220085033691389548f12+25526177666070529808f6+138603268355749244)e+167620036074811f43-428102417974791473f37-66997243801231679313f31-83426716722148750485f25+203673895369980765f19+83523056326010432457f13+66995789640238066937f7+478592855549587901f,801692827936c3+2405078483808fc2-2405078483808f2c-13752945467f45+35125117815561f39+5496946957826433f33+6834659447749117f27-44484880462461f21-6873406230093057f15-5450844938762633f9+1216586044571f3,(23810276989699200d-23810276989699200f)c+23810276989699200d2+71430830969097600fd+7936758996566400f3e5-31747035986265600f4e4+31747035986265600f5e3+(404774708824886400f6+396837949828320000)e2+(-1247372229446701f43+3185785654596621203f37+498594866849974751463f31+624542545845791047935f25+931085755769682885f19-624150663582417063387f13-499881859388360475647f7-3926885313819527351f)e-7026011547118141f44+17944427051950691243f38+2808383522593986603543f32+3513624142354807530135f26+2860757006705537685f20-3511356735642190737267f14-2811332494697103819887f8-20315011631522847311f2,(7936758996566400e-7936758996566400f)c+(-4418748183673f43+11285568707456559f37+1765998617294451019f31+2173749283622606155f25-55788292195402895f19-2215291421788292951f13-1718142665347430851f7+30256569458230237f)e+4418748183673f44-11285568707456559f38-1765998617294451019f32-2173749283622606155f26+55788292195402895f20+2215291421788292951f14+1718142665347430851f8-30256569458230237f2,(72152354514240f6-72152354514240)c+40950859449f43-104588980990367f37-16367227395575307f31-20268523416527355f25+442205002259535f19+20576059935789063f13+15997133796970563f7-275099892785581f,1984189749141600d3+5952569247424800fd2-5952569247424800f2d-3968379498283200f4e5+15873517993132800f5e4+17857707742274400e3+(-148814231185620000f7-162703559429611200f)e2+(-390000914678878f44+996062704593756434f38+155886323972034823914f32+194745956143985421330f26+6205077595574430f20-194596512653299068786f14-155796897940756922666f8-1036375759077320978f2)e-374998630035991f45+957747106595453993f39+149889155566764891693f33+187154171443494641685f27-127129015426348065f21-187241533243115040417f15-149719983567976534037f9-836654081239648061f3,(5952569247424800e-5952569247424800f)d-3968379498283200f3e5+9920948745708000f4e4-3968379498283200f5e3+(-148814231185620000f6-150798420934761600)e2+(492558110242553f43-1257992359608074599f37-196883094539368513959f31-246562115745735428055f25-325698701993885505f19+246417769883651808111f13+197327352068200652911f7+1523373796389332143f)e+2679481081803026f44-6843392695421906608f38-1071020459642646913578f32-1339789169692041240060f26-852746750910750210f20+1339105101971878401312f14+1071900289758712984762f8+7555239072072727756f2,(11905138494849600f6-11905138494849600)d-7936758996566400f2e5+31747035986265600f3e4-31747035986265600f4e3+(-420648226818019200f11-404774708824886400f5)e2+(15336187600889f42-39169739565161107f36-6127176127489690827f30-7217708742310509615f24+538628483890722735f18+7506804353843507643f12+5886160769782607203f6+63576108396535879)e+71737781777066f43-183218856207557938f37-28672874271132276078f31-35625223686939812010f25+164831339634084390f19+35724160423073052642f13+28627022578664910622f7+187459987029680506f,1322793166094400e6-3968379498283200fe5+3968379498283200f2e4-5291172664377600f3e3+(-230166010900425600f10-226197631402142400f4)e2+(-152375364610443885f47+389166626064854890415f41+60906097841360558987335f35+76167367934608798697275f29+27855066785995181125f23-76144952817052723145495f17-60933629892463517546975f11-411415071682002547795f5)e-209493533143822f42+535045979490560586f36+83737947964973553146f30+104889507084213371570f24+167117997269207870f18-104793725781390615514f12-83842685189903180394f6-569978796672974242,(25438330117200f6+25438330117200)e3+(76314990351600f7+76314990351600f)e2+(-1594966552735f44+4073543370415745f38+637527159231148925f32+797521176113606525f26+530440941097175f20-797160527306433145f14-638132320196044965f8-4510507167940725f2)e-6036376800443f45+15416903421476909f39+2412807646192304449f33+3017679923028013705f27+1422320037411955f21-3016560402417843941f15-2414249368183033161f9-16561862361763873f3,(1387545279120f12-1387545279120)e2+(4321823003f43-11037922310209f37-1727510711947989f31-2165150991154425f25-5114342560755f19+2162682824948601f13+1732620732685741f7+13506088516033f)e+24177661775f44-61749727185325f38-9664106795754225f32-12090487758628245f26-8787672733575f20+12083693383005045f14+9672870290826025f8+68544102808525f2,f48-2554f42-399710f36-499722f30+499722f18+399710f12+2554f6-1]

Type: List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Apply lexTriangular to compute a decomposition into regular triangular sets. This should not take more than 5 seconds.

lexTriangular(lg,false)$lextripack
\[\]
[{f6+1,e6-3fe5+3f2e4-4f3e3+3f4e2-3f5e-1,3d+f2e5-4f3e4+4f4e3-2f5e2-2e+2f,c+f,3b+2f2e5-5f3e4+5f4e3-10f5e2-4e+7f,a-f2e5+3f3e4-3f4e3+4f5e2+3e-3f},{f6-1,e-f,d-f,c2+4fc+f2,(c-f)b-fc-5f2,a+b+c+3f},{f6-1,e-f,d-f,c-f,b2+4fb+f2,a+b+4f},{f6-1,e-f,d2+4fd+f2,(d-f)c-fd-5f2,b-f,a+c+d+3f},{f36-2554f30-399709f24-502276f18-399709f12-2554f6+1,(161718564f12-161718564)e2+(-504205f31+1287737951f25+201539391380f19+253982817368f13+201940704665f7+1574134601f)e-2818405f32+7198203911f26+1126548149060f20+1416530563364f14+1127377589345f8+7988820725f2,(693772639560f6-693772639560)d-462515093040f2e5+1850060372160f3e4-1850060372160f4e3+(-24513299931120f11-23588269745040f5)e2+(-890810428f30+2275181044754f24+355937263869776f18+413736880104344f12+342849304487996f6+3704966481878)e-4163798003f31+10634395752169f25+1664161760192806f19+2079424391370694f13+1668153650635921f7+10924274392693f,(12614047992f6-12614047992)c-7246825f31+18508536599f25+2896249516034f19+3581539649666f13+2796477571739f7-48094301893f,(693772639560f6-693772639560)b-925030186080f2e5+2312575465200f3e4-2312575465200f4e3+(-40007555547960f11-35382404617560f5)e2+(-3781280823f30+9657492291789f24+1511158913397906f18+1837290892286154f12+1487216006594361f6+8077238712093)e-9736390478f31+24866827916734f25+3891495681905296f19+4872556418871424f13+3904047887269606f7+27890075838538f,a+b+c+d+e+f},{f6-1,e2+4fe+f2,(e-f)d-fe-5f2,c-f,b-f,a+d+e+3f}]

Type: List RegularChain(Integer,[a,b,c,d,e,f])

Note that the first set of the decomposition is normalized (all initials are integer numbers) but not the second one (normalized triangular sets are defined in the description of the NormalizedTriangularSetCategory constructor).

So apply now lexTriangular to produce normalized triangular sets.

lts := lexTriangular(lg,true)$lextripack
\[\]
[{f6+1,e6-3fe5+3f2e4-4f3e3+3f4e2-3f5e-1,3d+f2e5-4f3e4+4f4e3-2f5e2-2e+2f,c+f,3b+2f2e5-5f3e4+5f4e3-10f5e2-4e+7f,a-f2e5+3f3e4-3f4e3+4f5e2+3e-3f},{f6-1,e-f,d-f,c2+4fc+f2,b+c+4f,a-f},{f6-1,e-f,d-f,c-f,b2+4fb+f2,a+b+4f},{f6-1,e-f,d2+4fd+f2,c+d+4f,b-f,a-f},{f36-2554f30-399709f24-502276f18-399709f12-2554f6+1,1387545279120e2+(4321823003f31-11037922310209f25-1727506390124986f19-2176188913464634f13-1732620732685741f7-13506088516033f)e+24177661775f32-61749727185325f26-9664082618092450f20-12152237485813570f14-9672870290826025f8-68544102808525f2,1387545279120d+(-1128983050f30+2883434331830f24+451234998755840f18+562426491685760f12+447129055314890f6-165557857270)e-1816935351f31+4640452214013f25+726247129626942f19+912871801716798f13+726583262666877f7+4909358645961f,1387545279120c+778171189f31-1987468196267f25-310993556954378f19-383262822316802f13-300335488637543f7+5289595037041f,1387545279120b+(1128983050f30-2883434331830f24-451234998755840f18-562426491685760f12-447129055314890f6+165557857270)e-3283058841f31+8384938292463f25+1312252817452422f19+1646579934064638f13+1306372958656407f7+4694680112151f,1387545279120a+1387545279120e+4321823003f31-11037922310209f25-1727506390124986f19-2176188913464634f13-1732620732685741f7-13506088516033f},{f6-1,e2+4fe+f2,d+e+4f,c-f,b-f,a-f}]

Type: List RegularChain(Integer,[a,b,c,d,e,f])

We check that all initials are constant.

[ [init(p) for p in (ts :: List(P))] for ts in lts]
\[\]
[[1,3,1,3,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[1,1,1,1,1,1],[1387545279120,1387545279120,1387545279120,1387545279120,1387545279120,1],[1,1,1,1,1,1]]

Type: List List NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f])

Note that each triangular set in lts is a lexicographical Groebner basis. Recall that a point belongs to the variety associated with lp if and only if it belongs to that associated with one triangular set ts in lts.

By running the squareFreeLexTriangularsquareFreeLexTriangularLexTriangularPackage operation, we retrieve the above decomposition.

squareFreeLexTriangular(lg,true)$lextripack
\[\]
[{f6+1,e6-3fe5+3f2e4-4f3e3+3f4e2-3f5e-1,3d+f2e5-4f3e4+4f4e3-2f5e2-2e+2f,c+f,3b+2f2e5-5f3e4+5f4e3-10f5e2-4e+7f,a-f2e5+3f3e4-3f4e3+4f5e2+3e-3f},{f6-1,e-f,d-f,c2+4fc+f2,b+c+4f,a-f},{f6-1,e-f,d-f,c-f,b2+4fb+f2,a+b+4f},{f6-1,e-f,d2+4fd+f2,c+d+4f,b-f,a-f},{f36-2554f30-399709f24-502276f18-399709f12-2554f6+1,1387545279120e2+(4321823003f31-11037922310209f25-1727506390124986f19-2176188913464634f13-1732620732685741f7-13506088516033f)e+24177661775f32-61749727185325f26-9664082618092450f20-12152237485813570f14-9672870290826025f8-68544102808525f2,1387545279120d+(-1128983050f30+2883434331830f24+451234998755840f18+562426491685760f12+447129055314890f6-165557857270)e-1816935351f31+4640452214013f25+726247129626942f19+912871801716798f13+726583262666877f7+4909358645961f,1387545279120c+778171189f31-1987468196267f25-310993556954378f19-383262822316802f13-300335488637543f7+5289595037041f,1387545279120b+(1128983050f30-2883434331830f24-451234998755840f18-562426491685760f12-447129055314890f6+165557857270)e-3283058841f31+8384938292463f25+1312252817452422f19+1646579934064638f13+1306372958656407f7+4694680112151f,1387545279120a+1387545279120e+4321823003f31-11037922310209f25-1727506390124986f19-2176188913464634f13-1732620732685741f7-13506088516033f},{f6-1,e2+4fe+f2,d+e+4f,c-f,b-f,a-f}]

Type: List SquareFreeRegularTriangularSet(Integer,IndexedExponents OrderedVariableList [a,b,c,d,e,f],OrderedVariableList [a,b,c,d,e,f],NewSparseMultivariatePolynomial(Integer,OrderedVariableList [a,b,c,d,e,f]))

Thus the solutions given by lts are pairwise different.

We count them as follows.

reduce(+,[degree(ts) for ts in lts])
\[\]
156

Type: PositiveInteger

We can investigate the triangular decomposition lts by using the ZeroDimensionalSolvePackage.

This requires to add an extra variable (smaller than the others) as follows.

ls2 : List Symbol := concat(ls,new()$Symbol)
\[\]
[a,b,c,d,e,f,%A]

Type: List Symbol

Then we call the package.

zdpack := ZDSOLVE(R,ls,ls2)
\[\]
ZeroDimensionalSolvePackage(Integer,[a,b,c,d,e,f],[a,b,c,d,e,f,%A])

Type: Domain

We compute a univariate representation of the variety associated with the input system as follows.

concat [univariateSolve(ts)$zdpack for ts in lts]
\[\]
[[complexRoots=?4-13?2+49,coordinates=[7a+%A3-6%A,21b+%A3+%A,21c-2%A3+19%A,7d-%A3+6%A,21e-%A3-%A,21f+2%A3-19%A]],

[complexRoots=?4+11?2+49,coordinates=[35a+3%A3+19%A,35b+%A3+18%A,35c-2%A3-%A,35d-3%A3-19%A,35e-%A3-18%A,35f+2%A3+%A]], [complexRoots=?8-12?7+58?6-120?5+207?4-360?3+802?2-1332?+1369,coordinates=[43054532a+33782%A7-546673%A6+3127348%A5-6927123%A4+4365212%A3-25086957%A2+39582814%A-107313172,43054532b-33782%A7+546673%A6-3127348%A5+6927123%A4-4365212%A3+25086957%A2-39582814%A+107313172,21527266c-22306%A7+263139%A6-1166076%A5+1821805%A4-2892788%A3+10322663%A2-9026596%A+12950740,43054532d+22306%A7-263139%A6+1166076%A5-1821805%A4+2892788%A3-10322663%A2+30553862%A-12950740,43054532e-22306%A7+263139%A6-1166076%A5+1821805%A4-2892788%A3+10322663%A2-30553862%A+12950740,21527266f+22306%A7-263139%A6+1166076%A5-1821805%A4+2892788%A3-10322663%A2+9026596%A-12950740]], [complexRoots=?8+12?7+58?6+120?5+207?4+360?3+802?2+1332?+1369,coordinates=[43054532a+33782%A7+546673%A6+3127348%A5+6927123%A4+4365212%A3+25086957%A2+39582814%A+107313172,43054532b-33782%A7-546673%A6-3127348%A5-6927123%A4-4365212%A3-25086957%A2-39582814%A-107313172,21527266c-22306%A7-263139%A6-1166076%A5-1821805%A4-2892788%A3-10322663%A2-9026596%A-12950740,43054532d+22306%A7+263139%A6+1166076%A5+1821805%A4+2892788%A3+10322663%A2+30553862%A+12950740,43054532e-22306%A7-263139%A6-1166076%A5-1821805%A4-2892788%A3-10322663%A2-30553862%A-12950740,21527266f+22306%A7+263139%A6+1166076%A5+1821805%A4+2892788%A3+10322663%A2+9026596%A+12950740]], [complexRoots=?4-?2+1,coordinates=[a-%A,b+%A3-%A,c+%A3,d+%A,e-%A3+%A,f-%A3]], [complexRoots=?8+4?6+12?4+16?2+4,coordinates=[4a-2%A7-7%A5-20%A3-22%A,4b+2%A7+7%A5+20%A3+22%A,4c+%A7+3%A5+10%A3+10%A,4d+%A7+3%A5+10%A3+6%A,4e-%A7-3%A5-10%A3-6%A,4f-%A7-3%A5-10%A3-10%A]], [complexRoots=?4+6?3+30?2+36?+36,coordinates=[30a-%A3-5%A2-30%A-6,6b+%A3+5%A2+24%A+6,30c-%A3-5%A2-6,30d-%A3-5%A2-30%A-6,30e-%A3-5%A2-30%A-6,30f-%A3-5%A2-30%A-6]], [complexRoots=?4-6?3+30?2-36?+36,coordinates=[30a-%A3+5%A2-30%A+6,6b+%A3-5%A2+24%A-6,30c-%A3+5%A2+6,30d-%A3+5%A2-30%A+6,30e-%A3+5%A2-30%A+6,30f-%A3+5%A2-30%A+6]], [complexRoots=?2+6?+6,coordinates=[a+1,b-%A-5,c+%A+1,d+1,e+1,f+1]], [complexRoots=?2-6?+6,coordinates=[a-1,b-%A+5,c+%A-1,d-1,e-1,f-1]], [complexRoots=?4+6?3+30?2+36?+36,coordinates=[6a+%A3+5%A2+24%A+6,30b-%A3-5%A2-6,30c-%A3-5%A2-30%A-6,30d-%A3-5%A2-30%A-6,30e-%A3-5%A2-30%A-6,30f-%A3-5%A2-30%A-6]], [complexRoots=?4-6?3+30?2-36?+36,coordinates=[6a+%A3-5%A2+24%A-6,30b-%A3+5%A2+6,30c-%A3+5%A2-30%A+6,30d-%A3+5%A2-30%A+6,30e-%A3+5%A2-30%A+6,30f-%A3+5%A2-30%A+6]], [complexRoots=?2+6?+6,coordinates=[a-%A-5,b+%A+1,c+1,d+1,e+1,f+1]], [complexRoots=?2-6?+6,coordinates=[a-%A+5,b+%A-1,c-1,d-1,e-1,f-1]], [complexRoots=?4+6?3+30?2+36?+36,coordinates=[30a-%A3-5%A2-30%A-6,30b-%A3-5%A2-30%A-6,6c+%A3+5%A2+24%A+6,30d-%A3-5%A2-6,30e-%A3-5%A2-30%A-6,30f-%A3-5%A2-30%A-6]], [complexRoots=?4-6?3+30?2-36?+36,coordinates=[30a-%A3+5%A2-30%A+6,30b-%A3+5%A2-30%A+6,6c+%A3-5%A2+24%A-6,30d-%A3+5%A2+6,30e-%A3+5%A2-30%A+6,30f-%A3+5%A2-30%A+6]], [complexRoots=?2+6?+6,coordinates=[a+1,b+1,c-%A-5,d+%A+1,e+1,f+1]], [complexRoots=?2-6?+6,coordinates=[a-1,b-1,c-%A+5,d+%A-1,e-1,f-1]], [complexRoots=?8+6?7+16?6+24?5+18?4-8?2+4,coordinates=[2a+2%A7+9%A6+18%A5+19%A4+4%A3-10%A2-2%A+4,2b+2%A7+9%A6+18%A5+19%A4+4%A3-10%A2-4%A+4,2c-%A7-4%A6-8%A5-9%A4-4%A3-2%A-4,2d+%A7+4%A6+8%A5+9%A4+4%A3+2%A+4,2e-2%A7-9%A6-18%A5-19%A4-4%A3+10%A2+4%A-4,2f-2%A7-9%A6-18%A5-19%A4-4%A3+10%A2+2%A-4]], [complexRoots=?8+12?7+64?6+192?5+432?4+768?3+1024?2+768?+256,coordinates=[1408a-19%A7-200%A6-912%A5-2216%A4-4544%A3-6784%A2-6976%A-1792,1408b-37%A7-408%A6-1952%A5-5024%A4-10368%A3-16768%A2-17920%A-5120,1408c+37%A7+408%A6+1952%A5+5024%A4+10368%A3+16768%A2+17920%A+5120,1408d+19%A7+200%A6+912%A5+2216%A4+4544%A3+6784%A2+6976%A+1792,2e+%A,2f-%A]], [complexRoots=?8+4?6+12?4+16?2+4,coordinates=[4a-%A7-3%A5-10%A3-6%A,4b-%A7-3%A5-10%A3-10%A,4c-2%A7-7%A5-20%A3-22%A,4d+2%A7+7%A5+20%A3+22%A,4e+%A7+3%A5+10%A3+10%A,4f+%A7+3%A5+10%A3+6%A]], [complexRoots=?8+16?6-96?4+256?2+256,coordinates=[512a-%A7-12%A5+176%A3-448%A,128b-%A7-16%A5+96%A3-256%A,128c+%A7+16%A5-96%A3+256%A,512d+%A7+12%A5-176%A3+448%A,2e+%A,2f-%A]], [complexRoots=?8-12?7+64?6-192?5+432?4-768?3+1024?2-768?+256,coordinates=[1408a-19%A7+200%A6-912%A5+2216%A4-4544%A3+6784%A2-6976%A+1792,1408b-37%A7+408%A6-1952%A5+5024%A4-10368%A3+16768%A2-17920%A+5120,1408c+37%A7-408%A6+1952%A5-5024%A4+10368%A3-16768%A2+17920%A-5120,1408d+19%A7-200%A6+912%A5-2216%A4+4544%A3-6784%A2+6976%A-1792,2e+%A,2f-%A]], [complexRoots=?8-6?7+16?6-24?5+18?4-8?2+4,coordinates=[2a+2%A7-9%A6+18%A5-19%A4+4%A3+10%A2-2%A-4,2b+2%A7-9%A6+18%A5-19%A4+4%A3+10%A2-4%A-4,2c-%A7+4%A6-8%A5+9%A4-4%A3-2%A+4,2d+%A7-4%A6+8%A5-9%A4+4%A3+2%A-4,2e-2%A7+9%A6-18%A5+19%A4-4%A3-10%A2+4%A+4,2f-2%A7+9%A6-18%A5+19%A4-4%A3-10%A2+2%A+4]], [complexRoots=?4+12?2+144,coordinates=[12a-%A2-12,12b-%A2-12,12c-%A2-12,12d-%A2-12,6e+%A2+3%A+12,6f+%A2-3%A+12]], [complexRoots=?4+6?3+30?2+36?+36,coordinates=[6a-%A3-5%A2-24%A-6,30b+%A3+5%A2+30%A+6,30c+%A3+5%A2+30%A+6,30d+%A3+5%A2+30%A+6,30e+%A3+5%A2+30%A+6,30f+%A3+5%A2+6]], [complexRoots=?4-6?3+30?2-36?+36,coordinates=[6a-%A3+5%A2-24%A+6,30b+%A3-5%A2+30%A-6,30c+%A3-5%A2+30%A-6,30d+%A3-5%A2+30%A-6,30e+%A3-5%A2+30%A-6,30f+%A3-5%A2-6]], [complexRoots=?4+12?2+144,coordinates=[12a+%A2+12,12b+%A2+12,12c+%A2+12,12d+%A2+12,6e-%A2+3%A-12,6f-%A2-3%A-12]], [complexRoots=?2-12,coordinates=[a-1,b-1,c-1,d-1,2e+%A+4,2f-%A+4]], [complexRoots=?2+6?+6,coordinates=[a+%A+5,b-1,c-1,d-1,e-1,f-%A-1]], [complexRoots=?2-6?+6,coordinates=[a+%A-5,b+1,c+1,d+1,e+1,f-%A+1]], [complexRoots=?2-12,coordinates=[a+1,b+1,c+1,d+1,2e+%A-4,2f-%A-4]], [complexRoots=?4+6?3+30?2+36?+36,coordinates=[30a-%A3-5%A2-30%A-6,30b-%A3-5%A2-30%A-6,30c-%A3-5%A2-30%A-6,6d+%A3+5%A2+24%A+6,30e-%A3-5%A2-6,30f-%A3-5%A2-30%A-6]], [complexRoots=?4-6?3+30?2-36?+36,coordinates=[30a-%A3+5%A2-30%A+6,30b-%A3+5%A2-30%A+6,30c-%A3+5%A2-30%A+6,6d+%A3-5%A2+24%A-6,30e-%A3+5%A2+6,30f-%A3+5%A2-30%A+6]], [complexRoots=?2+6?+6,coordinates=[a+1,b+1,c+1,d-%A-5,e+%A+1,f+1]], [complexRoots=?2-6?+6,coordinates=[a-1,b-1,c-1,d-%A+5,e+%A-1,f-1]]]

Type: List Record(complexRoots: SparseUnivariatePolynomial Integer,coordinates: List Polynomial Integer)

Since the univariateSolveunivariateSolveZeroDimensionalSolvePackage operation may split a regular set, it returns a list. This explains the use of concatconcatList.

Look at the last item of the result. It consists of two parts. For any complex root ? of the univariate polynomial in the first part, we get a tuple of univariate polynomials (in a, ..., f respectively) by replacing %A by ? in the second part. Each of these tuples t describes a point of the variety associated with lp by equaling to zero the polynomials in t.

Note that the way of reading these univariate representations is explained also in the example illustrating the ZeroDimensionalSolvePackage constructor.

Now, we compute the points of the variety with real coordinates.

concat [realSolve(ts)$zdpack for ts in lts]
\[\]
[[%B23,%B23,%B23,%B27,-%B27-4%B23,%B23],

[%B23,%B23,%B23,%B28,-%B28-4%B23,%B23], [%B24,%B24,%B24,%B25,-%B25-4%B24,%B24], [%B24,%B24,%B24,%B26,-%B26-4%B24,%B24], [%B29,%B29,%B29,%B29,%B33,-%B33-4%B29], [%B29,%B29,%B29,%B29,%B34,-%B34-4%B29], [%B30,%B30,%B30,%B30,%B31,-%B31-4%B30], [%B30,%B30,%B30,%B30,%B32,-%B32-4%B30], [%B35,%B35,%B39,-%B39-4%B35,%B35,%B35], [%B35,%B35,%B40,-%B40-4%B35,%B35,%B35], [%B36,%B36,%B37,-%B37-4%B36,%B36,%B36], [%B36,%B36,%B38,-%B38-4%B36,%B36,%B36], [%B41,%B52,78655216006689520%B4131-66961792412002229840%B4125-2576989318149235160%B4119-19759129907293003344760%B4113-10484606964892002229840%B417-212526348316006689520%B41,-7781711891387545279120%B4131+19874681962671387545279120%B4125+155496778477189693772639560%B4119+191631411158401693772639560%B4113+3003354886375431387545279120%B417-755656433863198220754160%B41,1094352947462515093040%B4131-2794979430821462515093040%B4125-218708802908737231257546520%B4119-9147666300359177085848840%B4113-145152550961823154171697680%B417-1564893370717462515093040%B41,-%B52-43218230031387545279120%B4131+18094954606922746643920%B4125+863753195062493693772639560%B4119+1088094456732317693772639560%B4113+17326207326857411387545279120%B417+135060885160331387545279120%B41], [%B42,%B49,78655216006689520%B4231-66961792412002229840%B4225-2576989318149235160%B4219-19759129907293003344760%B4213-10484606964892002229840%B427-212526348316006689520%B42,-7781711891387545279120%B4231+19874681962671387545279120%B4225+155496778477189693772639560%B4219+191631411158401693772639560%B4213+3003354886375431387545279120%B427-755656433863198220754160%B42,1094352947462515093040%B4231-2794979430821462515093040%B4225-218708802908737231257546520%B4219-9147666300359177085848840%B4213-145152550961823154171697680%B427-1564893370717462515093040%B42,-%B49-43218230031387545279120%B4231+18094954606922746643920%B4225+863753195062493693772639560%B4219+1088094456732317693772639560%B4213+17326207326857411387545279120%B427+135060885160331387545279120%B42], [%B42,%B50,78655216006689520%B4231-66961792412002229840%B4225-2576989318149235160%B4219-19759129907293003344760%B4213-10484606964892002229840%B427-212526348316006689520%B42,-7781711891387545279120%B4231+19874681962671387545279120%B4225+155496778477189693772639560%B4219+191631411158401693772639560%B4213+3003354886375431387545279120%B427-755656433863198220754160%B42,1094352947462515093040%B4231-2794979430821462515093040%B4225-218708802908737231257546520%B4219-9147666300359177085848840%B4213-145152550961823154171697680%B427-1564893370717462515093040%B42,-%B50-43218230031387545279120%B4231+18094954606922746643920%B4225+863753195062493693772639560%B4219+1088094456732317693772639560%B4213+17326207326857411387545279120%B427+135060885160331387545279120%B42], [%B43,%B47,78655216006689520%B4331-66961792412002229840%B4325-2576989318149235160%B4319-19759129907293003344760%B4313-10484606964892002229840%B437-212526348316006689520%B43,-7781711891387545279120%B4331+19874681962671387545279120%B4325+155496778477189693772639560%B4319+191631411158401693772639560%B4313+3003354886375431387545279120%B437-755656433863198220754160%B43,1094352947462515093040%B4331-2794979430821462515093040%B4325-218708802908737231257546520%B4319-9147666300359177085848840%B4313-145152550961823154171697680%B437-1564893370717462515093040%B43,-%B47-43218230031387545279120%B4331+18094954606922746643920%B4325+863753195062493693772639560%B4319+1088094456732317693772639560%B4313+17326207326857411387545279120%B437+135060885160331387545279120%B43], [%B43,%B48,78655216006689520%B4331-66961792412002229840%B4325-2576989318149235160%B4319-19759129907293003344760%B4313-10484606964892002229840%B437-212526348316006689520%B43,-7781711891387545279120%B4331+19874681962671387545279120%B4325+155496778477189693772639560%B4319+191631411158401693772639560%B4313+3003354886375431387545279120%B437-755656433863198220754160%B43,1094352947462515093040%B4331-2794979430821462515093040%B4325-218708802908737231257546520%B4319-9147666300359177085848840%B4313-145152550961823154171697680%B437-1564893370717462515093040%B43,-%B48-43218230031387545279120%B4331+18094954606922746643920%B4325+863753195062493693772639560%B4319+1088094456732317693772639560%B4313+17326207326857411387545279120%B437+135060885160331387545279120%B43], [%B44,%B45,78655216006689520%B4431-66961792412002229840%B4425-2576989318149235160%B4419-19759129907293003344760%B4413-10484606964892002229840%B447-212526348316006689520%B44,-7781711891387545279120%B4431+19874681962671387545279120%B4425+155496778477189693772639560%B4419+191631411158401693772639560%B4413+3003354886375431387545279120%B447-755656433863198220754160%B44,1094352947462515093040%B4431-2794979430821462515093040%B4425-218708802908737231257546520%B4419-9147666300359177085848840%B4413-145152550961823154171697680%B447-1564893370717462515093040%B44,-%B45-43218230031387545279120%B4431+18094954606922746643920%B4425+863753195062493693772639560%B4419+1088094456732317693772639560%B4413+17326207326857411387545279120%B447+135060885160331387545279120%B44], [%B44,%B46,78655216006689520%B4431-66961792412002229840%B4425-2576989318149235160%B4419-19759129907293003344760%B4413-10484606964892002229840%B447-212526348316006689520%B44,-7781711891387545279120%B4431+19874681962671387545279120%B4425+155496778477189693772639560%B4419+191631411158401693772639560%B4413+3003354886375431387545279120%B447-755656433863198220754160%B44,1094352947462515093040%B4431-2794979430821462515093040%B4425-218708802908737231257546520%B4419-9147666300359177085848840%B4413-145152550961823154171697680%B447-1564893370717462515093040%B44,-%B46-43218230031387545279120%B4431+18094954606922746643920%B4425+863753195062493693772639560%B4419+1088094456732317693772639560%B4413+17326207326857411387545279120%B447+135060885160331387545279120%B44], [%B53,%B57,-%B57-4%B53,%B53,%B53,%B53], [%B53,%B58,-%B58-4%B53,%B53,%B53,%B53], [%B54,%B55,-%B55-4%B54,%B54,%B54,%B54], [%B54,%B56,-%B56-4%B54,%B54,%B54,%B54]]

Type: List List RealClosure Fraction Integer

We obtain 24 points given by lists of elements in the RealClosure of Fraction of R. In each list, the first value corresponds to the indeterminate f, the second to e and so on. See ZeroDimensionalSolvePackage to learn more about the realSolverealSolveZeroDimensionalSolvePackage operation.