1.3 Example: Maxwell’s Equation¶
Equipped with the machinery provided by the DeRhamComplex
we try to verify
some calculations done in [4] , namely Maxwell’s field equations in
differential form notation. The ordinary well known form of the equations reads
as follows, where the first set is Faraday’s and Ampere’s law and the
second set are the continuity laws:
and
The vector functions E,H,B,D and J are called, in this order, electric- and magnetic field, magnetic induction, dielectric displacement and electric current. The only scalar function ρ is the charge density. Each of the vector functions is a function \(\mathbb{R}^4\rightarrow \mathbb{R}^3\), and ρ is \(\mathbb{R}^4\rightarrow \mathbb{R}\), a scalar function in the variables \((x,y,z,t)\). And c denotes the speed of light. Flanders defines the following differential forms:
and
and
Then it is claimed that the four vector equations above are equivalent to the following two differential form equations:
Now let us prove this. We choose \(c=1\) for simplicity.
R:=Expression(Integer)
M := DERHAM(Integer,[x,y,z,t])
X := [x,y,z,t]::List R
dX := [dx,dy,dz,dt] := [generator(i)$M for i in 1..4]
d ==> exteriorDifferential
Type: List(DeRhamComplex(Integer,[x,y,z,t]))
After these preparations we define the various fields and functions:
E:=vector [(operator E[j]) X for j in 1..3]
D:=vector [(operator D[j]) X for j in 1..3]
B:=vector [(operator B[j]) X for j in 1..3]
H:=vector [(operator H[j]) X for j in 1..3]
J:=vector [(operator J[j]) X for j in 1..3]
rho := (operator 'rho) X
Now we may define the forms \(\alpha,\beta,\gamma\):
alpha:=(E.1*dx + E.2*dy + E.3*dz)*dt+ B.1*dy*dz + B.2*dz*dx + B.3*dx*dy
Type: DeRhamComplex(Integer,[x,y,z,t])
beta:=-(H.1*dx + H.2*dy + H.3*dz)*dt + D.1*dy*dz + D.2*dz*dx + D.3*dx*dy
and finally
gamma:=(J.1*dy*dz + J.2*dz*dx + J.3*dx*dy)*dt - rho*dx*dy*dz
Now let us calculate \(d\alpha\)
d alpha
giving the output
(E (x,y,z,t) - E (x,y,z,t) + B (x,y,z,t))dy dz dt
3,2 2,3 1,4
+
(E (x,y,z,t) - E (x,y,z,t) - B (x,y,z,t))dx dz dt
3,1 1,3 2,4
+
(E (x,y,z,t) - E (x,y,z,t) + B (x,y,z,t))dx dy dt
2,1 1,2 3,4
+
(B (x,y,z,t) + B (x,y,z,t) + B (x,y,z,t))dx dy dz
3,3 2,2 1,1
Type: DeRhamComplex(Integer,[x,y,z,t])
Thus, if we extract the coefficients of each term, we get for dα=0:
which is just the first and last of the Maxwell equations. In the same manner we see that dβ+4πγ corresponds to the second and third one.
-> d beta + 4 * %pi * gamma
resulting in
(- H (x,y,z,t) + H (x,y,z,t) + D (x,y,z,t) + 4%pi J (x,y,z,t))dy dz dt
3,2 2,3 1,4 1
+
(- H (x,y,z,t) + H (x,y,z,t) - D (x,y,z,t) - 4%pi J (x,y,z,t))dx dz dt
3,1 1,3 2,4 2
+
(- H (x,y,z,t) + H (x,y,z,t) + D (x,y,z,t) + 4%pi J (x,y,z,t))dx dy dt
2,1 1,2 3,4 3
+
(D (x,y,z,t) + D (x,y,z,t) + D (x,y,z,t) - 4%pi rho(x,y,z,t)) dx dy dz
3,3 2,2 1,1
Type: DeRhamComplex(Integer,[x,y,z,t])
[4] | Harley Flanders and Mathematics. Differential Forms with Applications to the Physical Sciences. Dover Pubn Inc, Auflage: Revised. edition. |