==================================================================== Hexadecimal Expansion ==================================================================== All rationals have repeating hexadecimal expansions. The operation hex returns these expansions of type HexadecimalExpansion. Operations to access the individual numerals of a hexadecimal expansion can be obtained by converting the value to RadixExpansion(16). More examples of expansions are available in the DecimalExpansion, BinaryExpansion, and RadixExpansion. This is a hexadecimal expansion of a rational number. :: r := hex(22/7) ___ 3.249 Type: HexadecimalExpansion Arithmetic is exact. :: r + hex(6/7) 4 Type: HexadecimalExpansion The period of the expansion can be short or long :: [hex(1/i) for i in 350..354] _______________ _________ _____ ______________________ [0.00BB3EE721A54D88, 0.00BAB6561, 0.00BA2E8, 0.00B9A7862A0FF465879D5F, _____________________________ 0.00B92143FA36F5E02E4850FE8DBD78] Type: List HexadecimalExpansion or very long! :: hex(1/1007) _______________________________________________________________________ 0.0041149783F0BF2C7D13933192AF6980619EE345E91EC2BB9D5CCA5C071E40926E54E8D ______________________________________________ DAE24196C0B2F8A0AAD60DBA57F5D4C8536262210C74F1 Type: HexadecimalExpansion These numbers are bona fide algebraic objects. :: p := hex(1/4)*x**2 + hex(2/3)*x + hex(4/9) 2 _ ___ 0.4x + 0.Ax + 0.71C Type: Polynomial HexadecimalExpansion q := D(p, x) _ 0.8x + 0.A Type: Polynomial HexadecimalExpansion g := gcd(p, q) _ x + 1.5 Type: Polynomial HexadecimalExpansion See Also: * )help RadixExpansion * )help BinaryExpansion * )help DecimalExpansion * )show HexadecimalExpansion